
DEVELOPMENT OF AUTOMATED 
PAVEMENT CONDITION SCORE AND 
DECISION LOGIC  
 
   

 
 
 
 
 

  
 

Prepared by:  
Joe Stefanski 

Laxmikanth Premkumar 
Torry Wilhoit 

Applied Research Associates, Inc. 
 

Roger Green 
Mary Robbins, Ph.D. 

Ohio University 
 

Prepared for: 
The Ohio Department of Transportation, 

           Office of Statewide Planning & Research 
 

Project ID Number: SJN135495 
 

February 2022 
 

Final Report  
  

  
 
 

 
 
 



 
DEVELOPMENT OF AUTOMATED PAVEMENT CONDITION SCORE AND DECISION LOGIC Page 1 

Technical Report Documentation Page 
 

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. 

FHWA/OH-2022-11   

4. Title and Subtitle 5. Report Date 

Development of Automated Pavement Condition Score 
and Decision Logic 

February 2022 

6. Performing Organization Code 

 

7. Author(s) 8. Performing Organization Report No. 

Joe Stefanski, Laxmikanth Premkumar, Torry Wilhoit, 
Mary Robbins, and Roger Green   

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 

Applied Research Associates, Inc.  
100 Trade Centre Drive, Suite 200 
Champaign, IL 61820 

 

11. Contract or Grant No. 

SJN135495 

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered 
Office of Research and Development 
Ohio Department of Transportation 
1980 West Broad Street 
Columbus, OH 43223 

Final Report  
14. Sponsoring Agency Code 
 

15. Supplementary Notes 

 

16. Abstract 
The Ohio Department of Transportation (ODOT) has been collecting 3D digital data on their pavement 
network since 2014. This data contains a variety of information derived from 3d laser scans of the 
pavement. While ODOT has been using the data to meet federal HPMS reporting requirements of 
pavement condition, the agency wished to leverage this wealth of data to aid their pavement 
management system and transition from a manual pavement condition survey to an automated one.  This 
research aims to provide ODOT a means to interpret the data and use it to make the same decisions as 
the existing pavement management system. Topics include analysis and development of a new rating 
methodology for automated distress detection and classification as well as deterioration models and 
decision trees for the new rating methodology. The rating system was developed using comparisons with 
existing manual ratings and automated data collected from 2014 through 2018. Additionally, the report 
covers how to implement this methodology and how it impacts pavement management decisions. 
17. Keywords 18. Distribution Statement 

Automated distress rating, pavement condition rating, 
automated distress rating, distress deterioration models, 
decision tree 

No restrictions. This document is available 
to the public through the National 
Technical Information Service, Springfield, 
Virginia 22161 

19. Security Classification (of 
this report) 

20. Security Classification 
(of this page) 21. No. of Pages 22. Price 

Unclassified Unclassified 120  

Form DOT F 1700.7 (8-72) Reproduction of completed pages authorized 
 
 
  



 
DEVELOPMENT OF AUTOMATED PAVEMENT CONDITION SCORE AND DECISION LOGIC Page 2 

Credits and Acknowledgments  

 
Prepared in cooperation with the Ohio Department of Transportation  

and the U.S. Department of Transportation, Federal Highway Administration 
 

The contents of this report reflect the views of the author(s) who is (are) responsible for the facts and 

the accuracy of the data presented herein.  The contents do not necessarily reflect the official views 

or policies of the Ohio Department of Transportation or the Federal Highway Administration.  This 

report does not constitute a standard, specification, or regulation. 

 

 

 

Researchers would like the thank the Technical Advisory Committee for their input during the 

research project, including special thanks to Patrick Bierl and Dave Miller for their time and 

support. 

 

The ARA team would like to acknowledge the immense contributions of the Ohio University 

research team, Mary Robbins and Roger Green. Their combined knowledge of ODOT’s 

procedures, network, and existing rating methodology were invaluable to the research. 

 

  



 
DEVELOPMENT OF AUTOMATED PAVEMENT CONDITION SCORE AND DECISION LOGIC Page 3 

Table of Contents 
Table of Figures .............................................................................................. 5 

Table of Tables ............................................................................................... 6 

Problem Statement .......................................................................................... 7 

Research Background ...................................................................................... 8 

Research Approach ........................................................................................ 11 

Developing a rating system ............................................................................ 15 

Deterioration model development ................................................................... 18 

Decision Tree Development ........................................................................... 22 

Findings and Conclusions .............................................................................. 24 

Data Quality ............................................................................................. 24 

Selection of Rating Methodology ..................................................................... 27 

Decision Outcomes ..................................................................................... 29 

Deterioration Modeling ................................................................................ 30 

Validation ................................................................................................ 31 

Recommendations ......................................................................................... 33 

Bibliography .................................................................................................. 36 

Appendix 1: Literature Review ....................................................................... 38 

Manual Data Collection ................................................................................ 39 

Semi-Automated Data Collection ..................................................................... 39 

Automated Data Collection ........................................................................... 40 

Evaluation of Technologies ......................................................................... 41 

Recent Research on Automated Distress Detection ................................................ 48 

Crack Detection ...................................................................................... 48 

Detection of Patching and Raveling ............................................................... 52 

Sensor-Measured Data .................................................................................. 52 

2012 ODOT Pavement Condition Ratings Evaluation Project ..................................... 52 

Transition from Manual to Automated Data Collection Methods ................................. 59 

Summary ................................................................................................. 61 

Appendix 2: Data Quality Control .................................................................. 62 

Overview ................................................................................................. 62 

Quality Control Check of Images ..................................................................... 68 

Appendix 3: Field Validation .......................................................................... 76 

Appendix 4: Models and Data ........................................................................ 91 

Identifying Outliers ..................................................................................... 91 



 
DEVELOPMENT OF AUTOMATED PAVEMENT CONDITION SCORE AND DECISION LOGIC Page 4 

PCI Comparisons ........................................................................................ 95 

Regression Models ...................................................................................... 97 

Bridge/Structure Exclusions ........................................................................... 99 

Faulting 2D vs 3D ......................................................................................100 

Appendix 5: Pavement Condition Score Manual ............................................ 101 

Process Overview ......................................................................................101 

Pathview Software Overview .........................................................................101 

AutoCrack ............................................................................................102 

AutoClass .............................................................................................103 

Updating Summary ..................................................................................104 

Generating Reports .................................................................................104 

Calculating PCS ........................................................................................105 

Distress Definitions .................................................................................105 

Assumptions .........................................................................................105 

Extent Assignment ..................................................................................106 

Using the PCS Calculation Tool ......................................................................108 

Inputs .................................................................................................108 

Deducts Sheet .......................................................................................109 

HeaderNames ........................................................................................110 

Exclusions ............................................................................................110 

Outputs ...............................................................................................110 

Adjusting the Regression Model ..................................................................110 

Using the Decision Tree Macro .......................................................................111 

Inputs .................................................................................................111 

Outputs ...............................................................................................112 

Procedure Checklist ...................................................................................113 

Appendix 6: Questionnaire .......................................................................... 114 

 

  



 
DEVELOPMENT OF AUTOMATED PAVEMENT CONDITION SCORE AND DECISION LOGIC Page 5 

Table of Figures 
FIGURE 1: A MAP OF STATE TRANSPORTATION AGENCIES RESPONDING TO QUESTIONNAIRE. ............................................................ 10 
FIGURE 2: AN EXAMPLE OF CHARTS USED TO IDENTIFY DISTRESSES DETECTED BY AUTOMATED DISTRESS DETECTION COMPARED TO MANUAL 

RATINGS. ................................................................................................................................................................ 12 
FIGURE 3: A FLOWCHART SHOWING THE PROCESS OF GENERATING A PCS RATING AND PAVEMENT MANAGEMENT DECISION FROM 

PATHVIEW DATA. ..................................................................................................................................................... 15 
FIGURE 4: A FLOWCHART SHOWING HOW A CALCULATION OF PAVEMENT CONDITION INDEX COULD BE INCORPORATED INTO THE 

PAVEMENT CONDITION SCORE RATING TO GENERATE PAVEMENT MANAGEMENT DECISIONS. .................................................. 17 
FIGURE 5: CHART COMPARING THE 20-YEAR SCORE PREDICTIONS OF THREE DIFFERENT DETERIORATION MODELS AND 2015/2016 PCS 

SCORES FOR SECTIONS WITH LAST ACTIVITY 50. .............................................................................................................. 21 
FIGURE 6: CHART DISPLAYING PREDICTED VERSUS ACTUAL 2018 PCS SCORES COMPARED TO PREDICTED 2018 PCS SCORES DERIVED FROM 

2016 DATA USING THE GENERIC TPM MODEL. .............................................................................................................. 22 
FIGURE 7: A SCATTER PLOT SHOWING THE COMPARISON OF 2014 AND 2016 AUTOMATED SCORES SHOWING THAT 2016 DATA HAD A 

GENERAL TREND OF BEING HIGHER THAN 2014 DATA. ..................................................................................................... 26 
FIGURE 8: A SCATTER PLOT SHOWING THE COMPARISON OF 2014 AND 2016 MANUAL PCR RATINGS DISPLAYING THE EXPECTED DECREASE 

IN SCORE FOR THE MAJORITY OF SECTIONS OVER THE TWO-YEAR SPAN WHILE OTHER SECTIONS IMPROVED SCORES WITH 
MAINTENANCE ACTIVITIES. ......................................................................................................................................... 26 

FIGURE 1.1: FUGRO PAVE3D SENSOR WORKING PRINCIPLE (ADOPTED FROM FUGRO ROADWARE, 2017). ........................................ 42 
FIGURE 1.2: MANDLI LCMS DISTRESS COLLECTION SYSTEM (ADOPTED FROM HTTP://MANDLI.COM). .............................................. 44 
FIGURE 1.3: PATHRUNNER XP COLLECTION VEHICLE. .............................................................................................................. 46 
FIGURE 1.4: WAYLINK PAVEVISION3D DHDV. ..................................................................................................................... 47 
FIGURE 1.5: PATHWAY DSE RATING MATCH WITH ODOT FOR AC PAVEMENTS (VAVRIK ET.AL. 2013). ............................................ 53 
FIGURE 1.6: PATHWAY DSE RATING MATCH WITH ODOT FOR AC/PCC PAVEMENTS (VAVRIK ET.AL. 2013). .................................... 56 
FIGURE 1.7: PATHWAY’S DSE RATING MATCH WITH ODOT FOR PCC PAVEMENTS (VAVRIK ET.AL. 2013). ....................................... 57 
FIGURE 1.8: COMPARISON OF PATHWAY’S PCR WITH AVERAGE ODOT PCR FOR ALL SITES. ........................................................... 58 
FIGURE 2.1: STRAIGHT-LINE DIAGRAM OF ALL-81 17.00-18.00 (SURFACE TYPE “G” = BITUMINOUS CONCRETE; BASE TYPE “L” = 

BITUMINOUS CONCRETE OR PENETRATION MACADAM, TYPE “N” = PLAIN CONCRETE) ......................................................... 64 
FIGURE 2.2 EXAMPLE OF VERY POOR IMAGE QUALITY ............................................................................................................. 70 
FIGURE 2.3 EXAMPLE OF AN UNASSIGNED DISTRESS IN PATHVIEW, INTENSITY, LEFT AND 3D ELEVATION, RIGHT .................................. 71 
FIGURE 2.4 HAR-30-12.000 – 2.949, IMAGE 00:49:55:21 ................................................................................................. 72 
FIGURE 2.5 EXAMPLES OF CRACK SEALING AS UNASSIGNED DISTRESSES AND PATCHING, HAN-30 12.000-2.949, IMAGE 00:52:28:11 73 
FIGURE 2.6 EXAMPLE OF WET PAVEMENT SURFACE AND ENTIRE LANE WIDTH IDENTIFIED AS UNASSIGNED DISTRESS ............................. 75 
FIGURE 4.1: SCATTER PLOT COMPARING PCS AND PCR WITH OUTLIERS MATCHING CRITERIA MARKED FOR COMPOSITE PAVEMENT. ....... 92 
FIGURE 4.2: SCATTER PLOT COMPARING PCS AND PCR WITH OUTLIERS MATCHING CRITERIA MARKED FOR FLEXIBLE PAVEMENT. ........... 93 
FIGURE 4.3: SCATTER PLOT COMPARING PCS AND PCR WITH OUTLIERS MATCHING CRITERIA MARKED FOR CONCRETE PAVEMENT. ......... 94 
FIGURE 4.4: SCATTER PLOT COMPARING AUTOMATED PCS AND AUTOMATED PCI SCORES FOR FLEXIBLE PAVEMENTS. .......................... 95 
FIGURE 4.5: SCATTER PLOT COMPARING MANUAL PCR AND AUTOMATED PCI SCORES FOR FLEXIBLE PAVEMENTS ................................ 96 
FIGURE 4.6: SCATTER PLOT COMPARING MANUAL PCR AND AUTOMATED PCS SCORES USING THE BASELINE PCS MODEL. .................... 97 
FIGURE 4.7: SCATTER PLOT COMPARING MANUAL PCR AND AUTOMATED PCS SCORES USING THE REGRESSED PCS MODEL. ................. 98 
FIGURE 4.8: SCATTER PLOT COMPARING PCS INCLUDING BRIDGES AND OTHER STRUCTURES TO PCS WITHOUT THEM. ......................... 99 
FIGURE 4.9: COMBINATION PLOT COMPARING THE CORRELATION BETWEEN PCS AND PCR USING 2D VS 3D FAULTING CALCULATIONS FOR 

A SAMPLE SET OF DATA. ........................................................................................................................................... 100 
FIGURE 5.1: FLOWCHART OF PCS CALCULATION PROCESS. ..................................................................................................... 101 
FIGURE 5.2: MAIN SCREEN OF PATHVIEW SOFTWARE. ........................................................................................................... 102 
FIGURE 6.1: RESPONSES TO QUESTION 1 RELATED TO HPMS .................................................................................................. 116 
FIGURE 6.2: RESPONSES TO QUESTION 1 RELATED TO PMS .................................................................................................... 116 
 
  



 
DEVELOPMENT OF AUTOMATED PAVEMENT CONDITION SCORE AND DECISION LOGIC Page 6 

 

Table of Tables 
TABLE 1: FINAL DISTRESS LIST FOR FLEXIBLE PAVEMENT. ........................................................................................................... 13 
TABLE 2: FINAL DISTRESS LIST FOR COMPOSITE PAVEMENT. ....................................................................................................... 13 
TABLE 3: FINAL DISTRESS LIST FOR CONCRETE PAVEMENT. ......................................................................................................... 14 
TABLE 4: A LIST DESCRIBING VARIOUS METHODOLOGIES CONSIDERED FOR DEVELOPMENT OF PAVEMENT CONDITION SCORE. ................ 16 
TABLE 5: REGRESSED COEFFICIENTS FOR FLEXIBLE PAVEMENTS. .................................................................................................. 28 
TABLE 6: REGRESSED COEFFICIENTS FOR COMPOSITE PAVEMENTS. .............................................................................................. 28 
TABLE 7: REGRESSED COEFFICIENTS FOR CONCRETE PAVEMENTS. ............................................................................................... 29 
TABLE 1.1: COMPARISON OF AUTOMATED AND MANUAL PAVEMENT DATA COLLECTION METHODS (ATTOH-OKINE, N. AND ADARKWA, O., 

2013). .................................................................................................................................................................. 38 
TABLE 1.2: PAVEMENT CONDITION DATA REQUIREMENTS BY VARIOUS STANDARDS/AGENCIES ....................................................... 40 
TABLE 1.3: RESEARCH INTO THE ROBUSTNESS OF LCMS CRACK IDENTIFICATION AND QUANTIFICATION ............................................. 49 
TABLE 1.4: SUMMARY OF PATHWAY MATCH WITH ODOT DSE RATINGS FOR AC PAVEMENTS (VAVRIK ET.AL. 2013). ........................ 54 
TABLE 1.5: SUMMARY OF PATHWAY MATCHES WITH ODOT DSE RATINGS FOR AC/PCC PAVEMENTS (VAVRIK ET.AL. 2013). ............. 55 
TABLE 1.6: SUMMARY OF PATHWAY’S MATCH WITH ODOT DSE RATINGS FOR PCC PAVEMENTS (VAVRIK ET.AL. 2013). .................... 57 
TABLE 1.7: VARIABILITY OF PATHWAY’S PCR RESULTS. ............................................................................................................ 58 
TABLE 4.1: OUTLIER SELECTION CRITERIA AND IMPACTED DATA. ................................................................................................ 91 
TABLE 5.1: LIST OF REQUIRED HEADERS THAT MUST BE SELECTED IN PATHVIEW FOR REPORTS. ....................................................... 105 
TABLE 5.2: LIST OF FIELDS IN THE DEDUCTS SHEET AND THEIR DESCRIPTIONS. .............................................................................. 109 
TABLE 5.3: LIST OF WORKSHEETS IN THE DECISION TREE MACRO AND THEIR DESCRIPTIONS. ........................................................... 111 
TABLE 5.4: LIST OF FIELDS IN THE INPUT WORKSHEET OF THE DECISION TREE MACRO WORKBOOK AND THEIR DESCRIPTIONS. ................ 111 
TABLE 5.5: LIST OF OUTPUT FIELDS FROM THE DECISION TREE MACRO AND THEIR DESCRIPTIONS..................................................... 112 
TABLE 6.1: LIST OF AGENCIES RESPONDING TO THE QUESTIONNAIRE. ........................................................................................ 115 
TABLE 6.2: RESPONSES TO QUESTION 2 OF THE QUESTIONNAIRE .............................................................................................. 117 
TABLE 6.3: RESPONSES TO QUESTION 3 OF THE QUESTIONNAIRE .............................................................................................. 117 
TABLE 6.4: RESPONSES TO QUESTION 4 OF THE QUESTIONNAIRE .............................................................................................. 117 
 
  



 
DEVELOPMENT OF AUTOMATED PAVEMENT CONDITION SCORE AND DECISION LOGIC Page 7 

Problem Statement 
 
A critical component of pavement management systems is a reliable, repeatable evaluation of 
the pavement condition.  The Ohio Department of Transportation (ODOT) has been using 
Pavement Condition Rating (PCR) since the 1980’s to conduct field evaluations of condition to 
fulfill this need.  According to the PCR manual, pavement raters would conduct both 
windshield survey of conditions as well as a survey of sample sections from the pavement 
shoulder. 
 
In 2014, ODOT began collecting automated pavement condition data using a Pathway Services 
vehicle equipped with a 3d laser-based crack detection unit to satisfy federal reporting 
requirements.  While both forward imagery and downward laser data available would allow 
engineers to conduct some evaluations digitally, not all distresses could be adequately rated 
from the data.  The need was identified to build a new rating system that allowed ODOT to 
automatically generate ratings to leverage the data provided by the collection vehicle.  
 
There are potential drawbacks to an automated rating system that should be considered.  
Limitations of data collection hardware or processing software make some distress types 
difficult or inconsistent to detect automatically.  Inconsistencies in data collection, vehicle 
calibrations, or equipment between data collection cycles may cause wider differences in 
results using an automated system compared to manual ratings. Advancements in technology 
and processing software could also pose similar issues when comparing year-to-year data. 
 
Another factor to consider is the institutional knowledge and historical data available through 
the existing rating methodology.  An automated system would only have seven years of data 
available for analysis, even including all data collected during the timespan of this research.  
PCR has decades of data, including experienced raters.  This means that any automated 
system needs to at least make some account of historical data. 
 
While the raw data is collected as part of annual efforts to meet federal requirements, 
additional data processing is required to achieve automated distress classification and ratings. 
This processing presents additional costs for automation in terms of time, data storage, 
equipment, and necessary quality control. This is in stark contrast to manual ratings that are 
ready to use for pavement management nearly as soon as they are collected. 
 
With these factors in mind, ODOT needed research to develop an automated pavement 
condition score (PCS).  This research would need to include an evaluation of the data, both in 
terms of accuracy of rating and consistency.  Additionally, comparisons would be needed 
between PCR and PCS ratings, deterioration, and the impact on pavement management 
decisions. The primary goal is a 90% minimum match of decision outcomes between the 
current manual rating practice and the automated rating methodology.  
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Research Background 
 
Under the current PCR methodology, ODOT raters evaluate pavements with visual inspection 
based upon the combination of distress, severity, and extent (DSE) present in a pavement 
management section.  Each DSE has a base deduct value for the distress type and a multiplier 
between 0 and 1 for each severity and extent.  The sum of the distress deducts for a section 
is then subtracted from 100 to arrive at the PCR score. Distress deducts are designed such 
that a PCR score of zero requires the maximum extent and severity of all distress types to be 
present. 
 
Additionally, a structural deduct score is computed. This score is the simple sum of all deduct 
values from distresses flagged as structural defects in the PCR manual. While the overall PCR 
score gives a general evaluation of pavement condition, the structural deduct total is useful 
for identifying more critical needs for repairs.  As such, pavement management decisions may 
use this score to trigger specific activities, such as an overlay with repairs, even if the PCR 
score wouldn’t. 
 
Once PCR ratings have been assigned to sections, the information can be used in conjunction 
with decision trees to arrive at appropriate treatment options.  The current decision trees are 
broken into three main network categories: urban, general, and priority. Each tree considers 
the pavement type, PCR score, structural deduct, annual average daily traffic, and the 
individual DSE ratings. The resulting decision bin includes one or more viable activities that 
could be considered by pavement management software for treatments, including some bins 
where “do nothing” is suggested. 
 
Changes to the pavement management software were beyond the scope of this research, but 
an understanding of how the decisions are utilized was important. Currently, decision 
outcomes and the viable activities will be used by the pavement management software in 
computing the best projects to pursue based upon a cost/benefit analysis. Calculating the 
benefit area of a treatment is found by integral difference between the projected condition 
after a proposed treatment and the projected condition with no treatment, based upon a 
deterioration model for that pavement section. 
 
Multiple deterioration model methodologies are used by ODOT to fill this need. The most 
robust was developed by Chou et al. (2008) and is based on transition probability matrices 
(TPMs), sometimes referred to as Markov models. This approach attempts to predict the 
likelihood a DSE changes state from year to year, such as increasing severity or extent. 
Predicting the shift in deduct value over time is computed by multiplying a vector that 
describes the deduct values of a given distress by a matrix of the transition probabilities for 
each year predicted forward. Using the base DSE deduct values in the vector results in an age-
based prediction of the deduct value for each starting state.  Using the section’s current 
deduct value as the vector instead results in a prediction of that section’s deduct value for a 
given distress in the prediction year. 
 
Existing models were derived from a large set of historical PCR data for each distress type for 
a variety of pavement families.  These families separate out pavement by type, traffic, and 
last surface treatment. Where these families lacked sufficient data, a regression model is 
used to extend the slope of previous deterioration within a family to predict future 
deterioration. In cases where neither the TPM nor regression model adequately describe the 
family’s deterioration, the most similar family’s model is substituted. 
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A research study completed in 2013 compared various data collection technologies available 
versus PCR evaluations conducted by ODOT raters (Vavrik et. al. 2013). Tests of the 
automated detection of pavement distress were conducted on a sample of pavements to 
compare the manual ratings with different equipment vendor automated results. The results 
revealed a high success rate of detecting the existence of several PCR distress types, but poor 
identification of severity and extent. Following the study, ODOT initiated the process of 
collecting the data required for automated distress identification.  
 
Additional literature review may be found in Appendix 1. Topics cover a wide range of other 
research into utilizing automated data for pavement management purposes, various collection 
systems, and reporting requirements. Of note is the mix of both success and failure reported 
by other research in matching automated data with manual ratings. These inconclusive results 
may point to the need for further development of automated systems, both in terms of 
hardware and software, before fully-automated pavement ratings are feasible for widespread 
adoption for pavement management systems. 
 
Starting in 2014, image data were collected statewide on a two-year cycle. Along with 
imagery, the collection vehicle provides the necessary data to meet federal reporting 
requirements established by The Moving Ahead for Progress in the 21st Century Act (MAP-21). 
However, the methodology to translate from automated distress data to pavement 
management decisions was unavailable, leaving the ODOT unable to compare the results of 
the automated distress identification to PCR-based decisions. Having this comparison allows 
the continuity of pavement performance prediction and forecasting which serves as the 
foundation of a pavement management system.   
 
To gauge industry trends, a questionnaire was sent to state-level transportation officials. Of 
the 25 agencies that responded, 64 percent use fully-automated data collection to meet MAP-
21 requirements, with the remainder using a semi-automated approach. For pavement 
management decisions, 52 percent use fully-automated while 36 percent use a semi-auto and 
the remaining 12 percent still use a manual process.  
 
While the overall responses indicate widespread use of automation, the practical application 
of a 100% automated system is far less common than those numbers may indicate. Even within 
the group of agencies reporting a fully-automated processes, the systems used and what 
agencies consider to be a fully-automated system varies widely. Many agencies that reported 
fully-automated distress classification for PMS purposes still included manual ratings on 
concrete pavements and manual corrections on other pavement types for some distresses. 
This manual effort often includes a quality control/assurance process that must be conducted 
on the data before it is used for pavement management decisions. 
 
Further, not all agencies use the same level of detail for their pavement management ratings 
as ODOT. This follows the same pattern as the inconsistent results shown in the literature 
review.  Different software, hardware, and existing rating systems have seen varying degrees 
of success with various drawbacks. More detailed responses and a sample of the questionnaire 
may be found in Appendix 6. 
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Figure 1: A map of state transportation agencies responding to questionnaire. 

 
This study establishes a pavement condition score (PCS) using the automated distress data, 
analyses the relationship between PCR and PCS, and provides a methodology to transition to 
an automated data collection and analysis-based pavement management system. Goals for 
the project were broken down into four main categories: development of PCS methodology, 
adjustments to decision tree logic, development of a PCS manual, and creation of this final 
report. 
 
Development of PCS encompassed several subtasks. The three primary tasks to arrive at a 
rating system were distress classification, extent, and severity calculations, and to weight the 
contribution of individual distresses. After having a rating system in place, a methodology to 
compare between PCS and PCR needed to be developed. Finally, new deterioration models 
for each distress would need to be considered as available data allowed. 
 
The goals pertaining to the decision tree logic included understanding the existing activity 
codes and decision tree logic, developing new logic to account for PCS, and validation of the 
changes. Validation would include a statistical analysis of the PCS decisions compared to the 
equivalent PCR decisions, field visits to compare PCS decisions with engineering practices, 
and analysis of additional data not used for the development of PCS.  This additional data 
would come from a 10% sample of 2017 and 2018 data that was collected during the research 
project duration. 
 
A manual for calculating PCS was developed and covers the complete process of arriving at a 
score, starting with required processing in the equipment vendor’s software. A breakdown of 
calculations used to compute the score from reports generated from that software is 
included.  Additionally, instruction for using the Excel worksheet macros developed by the 
research team for calculating PCS and computing the decision trees is included for reference.  
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Research Approach 
 
Data received from ODOT initially included all data from 2014, 2015, and 2016 data 
collections.  The full set of data was compiled onto a network attached storage device 
provided as part of this research effort.  Throughout the course of the research, ODOT 
delivered additional data from 2017 and 2018 data collections as they became available.  Due 
to the size of the data, only 2017 data was added to the storage system, with 2018 data being 
stored and processed externally. 
 
Initial data received were previously processed through Pathview’s AutoCrack software, which 
detects the presence of various distresses from 3d laser scan data.  This process only detects 
presence and does not classify the distress into type, severity, or extent.  Processing the 
annually collected data, representing half the network, may take several months to complete 
distress detection using the AutoCrack software.   
 
Data had also been processed using Pathview’s AutoClass tool prior to the research team 
receiving it.  This tool attempts to classify each distress identified by the AutoCrack tool into 
a distress type and severity.  Processing the annually collected data through this tool can take 
several weeks.  This led to significant delays later in the research when the data needed to 
be reprocessed using an updated version of the software. 
 
Initial review of the data by the research team identified several distress types utilized by 
PCR that were not reported or detected by the Pathview software.  A series of meetings 
between researchers, ODOT, and the software developer were held to attempt to increase 
the available distress types.  This was a lengthy process that included development time for 
the software updates required, reprocessing the data through a revised tool, and 
analysis/reporting of the results.  Several iterations of these steps were conducted to arrive 
at the final list of distresses available to develop the PCS methodology. 
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Figure 2: An example of charts used to identify distresses detected by automated 

distress detection compared to manual ratings.  
 
For a given distress to be considered for the final list of PCS distresses, it needed to be 
adequately reported by the software. Pathview software provides a reporting feature that can 
aggregate distress quantities by a set interval along with section identification information. 
For a majority of distresses reported, quantity for each severity is reported for each distress.  
Quantities can be reported in units specified by the user, such as length, width, or area.  In 
all cases, distress quantities were output in units that matched their PCR definitions. 
 
Consideration was given to the reporting interval to use for research purposes. Overall section 
totals limited analysis of distresses such as rutting, which would only be reported as the 
section average. Researchers decided to use a tenth-mile reporting frequency in Pathview 
software to allow more flexibility in evaluating such distresses. Additionally, this smaller 
interval allows ratings to eliminate intervals with invalid data, rather than having them 
influence the section average. 
 
For a distress to appear in the interval report, it must be defined in a configuration file 
(*.C11) and be supported by Pathview software. Researchers worked with Pathway Services to 
obtain a new configuration file and software updates to support as many distresses as 
Pathway Services could manage to implement.  
 
Several rounds of updates to the configuration and software were conducted.  Each round 
required sample data to be reprocessed with the new version of Pathview software and 
configuration file. Data from 2016 covering district 1 was used to gauge the impact of the 
changes. Once the final software version and configuration were set, the full data set (2015 
and 2016 data collection cycles) was reprocessed with the updates.  The processing required 
several months to complete, with additional time required to extract reports necessary for 
PCS calculations. 
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However, after these updates, a variety of distresses failed to report quantities for any 
sections in the research data despite being present in the report header and in manual PCR 
evaluations. These distresses are noted in the final distress list but were not used in the 
development of PCS.  Additional PCR distresses are noted in the following tables that were 
not used directly in PCS but were included in other distress types. 
 
 

Table 1: Final distress list for flexible pavement. 
Description  PathwayCode PCR Code Notes 
Raveling Ravel 1  

Bleeding Bleeding 2 Header present, but no quantity in 
data. Not used in PCS calculations. 

Patching Patching 3 Header present, but no quantity in 
data. Not used in PCS calculations. 

Debonding N/A 4 Debonding reported as Potholes by 
Pathview 

Rutting Rut 6  

Wheel Track Cracking WheelT 9  

Block Transverse Cracking N/A 10 All transverse cracking reported 
together by Pathview, PCS reports 
all as code 14. 

Longitudinal Cracking Long 11  

Edge Cracking Edge 12  

Thermal Cracking Trans 14  

Potholes PotHoles 15  

 
 

Table 2: Final distress list for composite pavement. 
Description  PathwayCode PCR Code Notes 
Raveling Ravel 1  

Bleeding Bleeding 2 Header present, but no quantity in 
data. Not used in PCS calculations. 

Patching Patching 3 Header present, but no quantity in 
data. Not used in PCS calculations. 

Rutting Rut 5  

Shattered slab Slab 7  

Tvs. Cracking – unjointed Trans 9  

Tvs. Cracking – joint 
reflection  

N/A 10 No distinction between composite 
base type, all transverse reported 
as code 9. 

Tvs. Cracking – 
intermediate 

N/A 11 No distinction between composite 
base type, all transverse reported 
as code 9. 

Longitudinal cracking Long 12  
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Table 3: Final distress list for concrete pavement. 
Description  PathwayCode PCR Code Notes 
Patching Patching 3 Header present, but no quantity in 

data. Not used in PCS calculations. 
Faulting   FAUA 5  

Transverse Joint Spalling TSpall 7  

Transverse Crack - 
Reinforced Concrete 

N/A 10 No distinction between types, all 
transverse reported as code 14 

Longitudinal Cracking Long 11  

Corner breaks Corner 12  

Longitudinal Spalling LSpall 13  

Transverse Crack - Plain 
Concrete 

Trans 14 
 

 
In parallel to supporting the adjustments to the software, the research team began the 
quality control process. Review of imagery provided within Pathview allowed engineers and 
technicians to compare the distresses identified and classified by the software against the 
PCR methodology. While initial review identified several misclassifications or missed distress 
ratings, a few more widespread issues were noted that needed additional review. 
 
One issue was the appearance of duplicate distress calls in the distress features database for 
the same physical distress. Quality control efforts here focused on identifying how widespread 
the issue is within the research data and attempting to identify the source. Tools within 
Pathview allowed the team to review the distress features database while viewing related 
imagery and location data. 
 
A second vein of quality control was related to distresses that were marked as “unassigned” 
in the distress features database. The research team wished to establish if these distresses 
were not being classified correctly or were correctly discarded. A sample set of 2016 data was 
prepared for analysis of the distress features database, covering district 1. The review would 
attempt to identify common causes of a distress being unassigned and give an estimate of 
how often this issue appeared in the data. 
 
Additional results from quality control identified several potential issues in the automated 
data. In several instances, the pavement type was mis-identified by the automated system or 
within the collection system database. This led to distress calls being made for the wrong 
pavement type, creating further disparity between automated and manual data. Such 
differences lead to incorrect classification of distress that is inconsistent with the rating 
methodology. This has a negative impact on matching decisions between automated and 
manual rating systems. Further details on this and other issues noted are reviewed in 
Appendix 2. 
 
To identify data that was invalid for the development process, an additional check was 
conducted to remove outliers in the data. Because the automated data is not collected at the 
same time as manual ratings are completed, some discrepancies between the two can be 
found when maintenance or road closures occur in between the two data sets. 
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Developing a rating system 
 
To facilitate calculation and iteration of PCS, a macro was developed using Visual Basic for 
Applications within Microsoft Excel.  This macro pulls data from Pathview’s sensor reports as 
well as a segmentation file derived from ODOT’s PCR history.  Settings within the spreadsheet 
for the macro include defining which headers from Pathview’s output correspond to each 
distress.  Each distress defined also has options to set the base deduct value, the multipliers 
used for each severity and extent combination, as well as a flag to mark a distress as 
structural. Thresholds between each extent are also defined on the sheet.  More details on 
the PCS calculation tool are presented in the PCS Manual included in Appendix 5. 
 

 
Figure 3: A flowchart showing the process of generating a PCS rating and pavement 

management decision from Pathview data. 
 
The sensor report output from Pathview has an optional reporting interval. Using an overall 
section total of distress would be possible, but the additional detail using a tenth-mile 
reporting interval allowed for additional granularity in the research. For example, an overall 
section average for rut depth could be used to generate a section score, but evaluating the 
smaller intervals allowed individual extents to be calculated for each severity.  As such, all 
research data used the tenth-mile interval for sensor reports generated by the Pathview 
software as input to the PCS calculation tool. 
 
Data from Pathview is reported in total quantity per distress type and severity combination.  
The PCS calculation tool generates a deduct value for each severity for an extent derived 
from the amount of distress and the section area or length (as appropriate). To arrive at a 
section’s overall rating for each distress, the deducts for each severity are compared, with 
the highest deduct rating being the final section distress rating.  In the event of a tie for 
highest deduct, the higher severity is used as the final rating. 
 
Output from the PCS calculation includes a rating sheet with the section’s identifying 
information, overall PCS score, the corresponding manual PCR score, structural deduct total, 
and a breakdown of individual distress ratings and deducts.  Included on one of the output 
worksheets is a copy of the deduct worksheet from the tool.  This allows both a record of the 
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deducts used for the calculation to be captured as well as allowing adjustments after the 
rating for the purposes of calibrating the models.  The total score and distress deducts are 
formulas that update with changes to this deduct sheet. 
 
Consideration was given to allow for exceptions in the data that would normally not be 
included as part of a pavement management section’s rating. The primary source of these 
exceptions is bridges.  Using structure location information provided by ODOT, researchers 
compiled a list of exclusions that would have a potential impact on PCS calculations.  The PCS 
calculation tool was modified to read this list of exemptions and skip any interval that 
included a bridge of a length greater than 25% of the interval length (132ft/40.23m for a 0.1 
mile/160.93m interval).   
 
A small study was conducted to gauge the impact of these exclusions on the score calculation, 
which showed the effect was minimal. The impact on decisions was insignificant, as most 
sections with scores changing were already calling for no treatment, which continued after 
the slight improvement to score from removing the exclusions. Sections with PCS under 80 
saw less change in score, as the distresses throughout the section made up a larger portion of 
reported distresses. 
 
To establish a baseline for development of PCS, a direct calculation using the PCR 
methodology was used. All fields available from Pathview’s sensor report were mapped within 
the PCS calculation tool to their appropriate PCR distress.  All deduct values, severity/extent 
multipliers, extent thresholds, and structural definitions were retained from PCR. The 
resulting PCS ratings were then compared to the manual PCR ratings provided from ODOT’s 
PCR history.  Initial data utilized was from 2016 and collected in District 1, representing the 
full district’s collected data for that year.  The single district was chosen due to data 
availability, given the reprocessing requirements mentioned previously. 
 
The baseline data would later be compared to other possible approaches the researchers 
analyzed. Four possibilities were given consideration, as summarized in the table below.  
Each of these would be used to generate a PCS rating, which would be compared to the 
manual ratings.  Each method would be evaluated by researchers and compared in correlation 
as well as practicality of implementation. 
 

Table 4: A list describing various methodologies considered for development of 
Pavement Condition Score. 

Method Description 
PCR Baseline Direct translation of PCR deduct values, multipliers, and definitions 
PCI Based on Pavement Condition Index (ASTM D6433 - 11), mapping 

automated to PCI distress definitions and using PCI deduct curves 
PCR Sliding 
Scale 

Direct translation of PCR with modification of the extent deduct multiplier 
on a linear interpolation between thresholds 

PCR Percentile Composite scoring based upon the percentile a section falls into within the 
sample data using PCR distress definitions 

PCR 
Regression 

Direct translation of PCR distress definitions, but using linear regression to 
adjust deduct values 

 
The Pavement Condition Index (PCI) is a widely used standard for rating pavements, originally 
created by the Army Corps of Engineers for the purposes of rating airport runways. It has 
since been adopted by agencies for the purposes of pavement ratings for roadways. In order 
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to use Pathview data to calculate PCI, an optional feature was added to the PCS calculation 
tool to report distress quantities for each section in PCI distress types.  
 
Decision trees used by ODOT contain distress checks that look for individual distress severity-
extent combinations that exist in PCR.  To accommodate these checks in the initial analysis of 
PCI methodology, the base model PCR distress ratings were used. PCI score was calculated in 
accordance with the ASTM specification, using the PCI distress quantities generated by the 
PCS calculation tool. Additionally, structural deduct was calculated from the original PCR 
distress deducts. 
 

 
Figure 4: A flowchart showing how a calculation of Pavement Condition Index could be 

incorporated into the Pavement Condition Score rating to generate pavement 
management decisions. 

 
Due to the limited nature of distresses available to calculate PCS in the baseline model, one 
method was considered for allowing the system a little more flexibility to achieve closer 
correlation with PCR. Normally in PCR, each extent bracket is fixed deduct multiplier that 
covers the whole range with the same score multiplier regardless of relative extent. In the 
PCR sliding scale method, the extent deducts were adjusted along a linear interpolation 
between the minimum deduct and maximum deduct for the bracket, using the relative extent 
within the bracket.  
 
For example, if the Frequent extent call has 20% and 50% as the respective lower and upper 
bound with a section that has 35% of that distress, then the overall deduct multiplier would 
be calculated as halfway between the Occasional deduct multiplier and the Frequent 
multiplier.  This means each bracket would consider the normal PCR multiplier as its 
maximum deduct multiplier. 
 
Another approach considered was to generate a score based upon how a section ranked 
compared to other sections in the data set via a percentile rank. Each section was given a 
percentile rank for each distress type and severity combination, based upon the percent of 
pavement length or area exhibiting that distress as reported by Pathview. Under this 
approach, an overall PCS score would be assigned based upon some aggregation of the 
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individual percentile of distresses reported, taking the PCR score at that percentile as a 
predicted score.  
 
The difficulty of this method is finding an aggregation of percentiles that presented 
reasonable correlation with a section’s actual ratings. No single distress would reliably predict 
overall score.  A direct average of percentile ranks would fail to account for the different 
possible combinations of distress that may arrive at the same score, as distresses with zero 
quantity would skew score towards a higher percentile. There may be a possibility to utilize 
coefficients to weight the contribution of individual distresses to the overall percentile rank, 
however this approach would further complicate the model and make it further removed from 
actual data. These factors make the application of such method a less attractive option. 
 
The final method tested for generating a PCS rating was using a regression model to set the 
deduct values, using the distress definitions from PCR.  This is the same as the baseline 
model, but with the weight of each distress being adjusted to minimize the sum of squared 
error between PCS and PCR scores. To support regression modeling, the PCS calculation tool 
was adjusted to output ratings as formulas that calculate deduct values from the deduct 
sheet. As regression modeling is conducted, the resulting changes to the PCS are 
automatically updated on the sheet.  
 
Regressed values would be generated using the Solver add-in for Microsoft Excel. A basic 
regression only constrained variables to be greater than or equal to zero. Initial results were 
reviewed and highlighted a few potential issues that needed addressed in the methodology. 
Several distresses were minimized to zero deduct value, whereas others trended toward 
rather high values.  While this did improve the correlation between PCS and PCR, it was 
inconsistent with engineering practices to have additional distress not contribute to score 
deterioration. 
 
Because of these inconsistencies, an additional trial for each pavement type was conducted 
with different constraints placed upon the regression model. Constraints were chosen to cap 
distresses which trended towards extremely high deduct coefficients and to prevent other 
distresses from trending to zero deduct.  
 
In each case, distresses which were not reported by Pathview were removed from 
consideration. The resulting deduct values from each trial generated PCS scores within the 
PCS calculation tool output that was used for regression modeling. Scores and ratings from 
the PCS tool were then used as inputs for the decision tree calculation tool. All regression 
model scores and resulting decisions were then compared for both correlation with PCR scores 
and PCR-based decisions. The final regression model for each pavement type was selected 
based upon overall correlation of decisions. 
 
Based upon the overall results from all possible PCS methodologies, and with the approval of 
the technical advisory committee, researchers selected the regression model as the final PCS 
model for the purposes of this project. 
 
Deterioration model development 
 
Once the PCS model was finalized, work could begin on developing deterioration models. 
Several options for predicting pavement deterioration exist. Within ODOT’s existing pavement 
management, two primary methods are used. Markov transition probability matrix (TPMs) 
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models are used where sufficient historical data is available. Where data is lacking, a 
regression model is used. 
 
Markov models predict the probability a given pavement will transition between the various 
possible distress severities and extents each year. This TPM is then multiplied by an array 
containing the deduct value of each severity and extent combination. The result describes the 
next year’s predicted rating. Further multiplication by the TPM deteriorates that result 
another year.  As such, multiplying the deduct array by the TPM to the nth power results in a 
nth year prediction. 
 
Provided by ODOT was a workbook that contains a complete list of TPMs available for each 
pavement family as defined by pavement type, last surface treatment, and district. Each 
distress has a 10 by 10 matrix that describes the deterioration of that distress type. All 
distresses are deteriorated within this sheet out to 40 years, for each starting state. 
 
The main drawback of the TPM method is the requirement for a significant amount of data to 
build reliable transition probabilities spanning the range of distress states and pavement 
families. Estimates from previous research estimates the need for around ten years of data 
from annual collections to build reliable models for most pavement families. This need is 
exacerbated by some pavement families being less common due to construction and 
maintenance practices. (Chou, 2008) 
 
Regression models are used to give a general deterioration when the source data was 
insufficient to generate a TPM with adequate combinations of distress. Under this approach, 
the prediction for a future score is calculated from a fit curve between previous years 
projected forward. Because this model is used when insufficient data is present, development 
of a consistent model may not always be feasible, particularly for each distress. At a 
minimum, a regression model requires three data points to generate a curve and subsequent 
prediction. 
 
Under the original proposal, researchers had planned to use 2014 and 2016 data collections as 
a source for development of deterioration models. Initial quality control checks revealed a 
couple of issues. In PCS rating, the overall network trend was an increase in score. This is at 
odds with maintenance data provided by ODOT as well as the changes in manual PCR ratings 
in those years of data. Additionally, reported rutting was trending lower in 2016 than 2014, 
again inconsistent with PCR and maintenance records. 
 
To verify whether this was an inconsistency in source data or an error in the PCS 
methodology, 2018 data available was compared against 2016 data. The resulting trends 
compared well with the PCR deteriorations. This led researchers to conclude that the 2014 
data may not be consistent enough to use reliably for deterioration modeling purposes. 
Further evaluation of the 2014 data by ODOT and Pathway would be necessary to determine 
the root cause of the issues. Without an identified and corrected cause, the data should be 
removed from consideration for future research. 
 
Instead of using 2014 data, a smaller set of data from 2018 data was used to create a basic 
deterioration model. The data was taken from District 11 in both 2016 and 2018 data sets. 
This data set is not necessarily representative of the whole state and was chosen only due to 
data availability. Data from 2018 had already been processed through Pathview’s AutoClass 
with the original intent to be only used as a verification data set. The time required to 
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process additional data to cover a wider portion of the state was too much to include in the 
project schedule. 
 
Given the rather small source data available to develop a model, generating new TPMs for all 
pavement families was deemed to be infeasible. Linear regression models were developed, 
but these suffer from the limited data as well.  Instead, researchers pursued the possibility of 
using the existing PCR TPMs for distresses reported by PCS. Because TPMs describe the 
likelihood of distresses changing from one state to another, distresses reported by automated 
should follow similar trends in increasing quantity and severity over time. However, some 
variance is expected from the model given the differences between PCS and PCR distresses 
available. 
 
A generic model was used for initial investigation to determine the viability of using these 
PCR TPMs with PCS data. The PCR deterioration model selected for this initial effort 
represents data from asphalt pavements from all districts with most recent activity as an 
overlay without repairs on the priority network. It was selected based upon the quantity of 
data used to develop the original TPM. 
 
To build a deterioration model curve from existing TPMs, the “null” deterioration from each 
distress was combined into a total deduct, then subtracted from 100. This presented a 40-
year deterioration from a new pavement with zero distress based upon an existing PCR model. 
While other severity and extent combinations provide similar deterioration curves, the “null” 
level was chosen because it covered the range of possible deduct values while also matching 
similar slopes to TPM curves generated using higher deduct distresses. 
 
To arrive at a PCS curve, distresses not reported by Pathview were removed and the PCS 
regressed coefficients replaced the baseline PCR coefficients. For comparison purposes, an 
additional curve was generated using the PCR TPM with only PCS distresses, but retaining the 
PCR deduct values. This curve would help gauge the impact of the change in distress deducts 
between PCS and PCR on deterioration. All curves were plotted to compare the 40-year trend. 
 
To gauge the accuracy of the deterioration models, PCS scores were taken from 2015 and 
2016 data and plotted at the section’s age measured from when the last activity was reported 
in ODOT’s maintenance records to the rating year.  Segments were selected to match the PCS 
model definition used, flexible pavement having a last activity listed as code 50 (overlay 
without repairs).  
 
As shown in Figure 5, this set of PCS data did not trend well with either the regression model 
derived from 2016/2018 PCS scores or the TPM model derived from a PCR model. Pavements 
within the first few years of deterioration after an overlay displayed notably lower PCS scores 
than any of the models would predict.  However, the later years of data follow a similar slope 
to the simple TPM model using PCS distresses and coefficients, just shifted along the age axis. 
 
The overall result is that age itself may not be a reliable predictor of PCS. Calculating an 
apparent age from the model, however, may allow reasonable deterioration along the slope, 
even if the calculated apparent age and actual age differ. It must be noted, though, that all 
the models diverge from the data most on newer pavements. This should have a minimal 
impact on pavement management decisions due to the PCS scores being above 80 for these 
sections, where no treatment would be suggested by the decision trees. 
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Figure 5: Chart comparing the 20-year score predictions of three different deterioration 

models and 2015/2016 PCS scores for sections with last activity 50. 
 
As an additional check of the performance of this generic curve, PCS scores calculated from 
2016 District 11 data were deteriorated two years forward using the model, then compared to 
corresponding 2018 District 11 calculated PCS scores. All pavement types were considered for 
this initial test, despite using a model derived from asphalt pavement, as a proof of concept. 
Only segments that showed a decrease in PCR between actual 2016 and 2018 data were 
considered. 
 
The tested simple model showed a reasonable prediction trend from 2016 PCS data, typically 
falling within 5 points of the actual 2018 PCS rating once projected forward. Considering the 
model chosen did not necessarily reflect the pavement type or family of sample data, the 
results are promising for applying more specific models to the data. 
 
The actual PCS scores trended lower than the prediction. This would have an impact on 
pavement management decisions relying on projected scores to plan future work activity. 
Less sections would be assigned a treatment from the decision tree in later years than would 
necessarily be warranted. 
 
While the data in figure 5 would seem to be at odds with the higher r-squared shown in the 
predicted vs actual data in figure 6, this is due to the predictions using apparent age instead 
of actual age. The score is computed by finding the year in the model that corresponds to the 
2016 score (the apparent age). Then, shifting the model forward 2 years results in the 2018 
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prediction. This highlights that the slope of the model is closer to the rate of change seen in 
PCS, even though the age-based score is far less accurate. 
 

 
Figure 6: Chart displaying predicted versus actual 2018 PCS scores compared to 
predicted 2018 PCS scores derived from 2016 data using the generic TPM model. 
 
 
Decision Tree Development 
Determining which treatment or treatments are viable for a given section is handled by 
decision tree logic in the current PCR methodology. These decision trees are broken into 
three main pavement management categories: Urban, General, and Priority. Factors such as 
pavement type, PCR score, structural deduct total, traffic, and individual distress presence 
are used to arrive at a decision bin.  These bins have one or more activity codes, including a 
“do nothing” result. 
 
Because of the need to evaluate many sections and potentially iterate on new decision logic, 
a macro was developed in Visual Basic for Applications for Microsoft Excel.  This macro takes 
a variety of inputs from a sheet that combines a section’s identifying information with traffic 
data and PCR (or PCS) ratings. As output, additional columns are populated on the input sheet 
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with the resulting decision bin, activity code(s), and a path code for each section.  The path 
code is a string where each character represents a result of a node on the tree.  Typically, 
each character is either the pavement type code or a number representing yes or no (one or 
zero, respectively). Further output describes any distress check that was performed, as well 
as a list of any distresses that matched the check. 
 
Basic analysis of the PCR decision trees was conducted to evaluate which nodes were primary 
drivers of the final decision. For this analysis, the decision tree calculation macro was used on 
2016 data.  The resulting path codes were used to summarize the frequency individual nodes 
were checked across the set of sections. These would later be compared with results from the 
same sections using the final PCS methodology. 
 
Because the stated goal of the project was to attempt to match PCR decisions with the PCS 
methodology, updates to the decision trees focused on smaller adjustments to account for 
differences rather than building new trees from scratch. Analysis of the existing decision 
trees highlighted a strong connection between score and decision outcome. Checks in the 
trees looking for individual distress type/severity/extent combinations (distress checks) 
impacted a significantly smaller portion of sections.  
 
By choosing a PCS model that derives from PCR and using regression to minimize the sum of 
squared error between the systems, it follows naturally that decision tree changes should be 
minimal. While the error is targeted to be minimized, some adjustments to score thresholds 
are reasonable since error is not reduced to zero.   
 
To arrive at adjusted score thresholds, the equation from a best fit regression line was used 
to back calculate a PCS score, using the existing PCR score as an input. Similarly, thresholds 
for structural deduct would be set using a best fit line of the correlation of PCR and PCS 
structural deduct scores. This method does require that a reasonable correlation between PCS 
and PCR exists. 
 
Other than these two types of score-based checks, decision tree logic is the same. Distress 
checks could remove distresses from consideration that are undetected or unreported by 
Pathview software, but they will already be removed by omission in the data and would not 
impact the decision outcome.   
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Findings and Conclusions 
 
Data presented in this report shows a relationship between automated and manual pavement 
ratings exists but good correlation is difficult to achieve.  It also supports previous research 
showing automated data currently available to ODOT struggles to achieve parity with a 
manual process, particularly for the purposes of pavement management decisions targeted by 
this research. This resulted in the researchers being unable to achieve the stated goal of a 
90% correlation between PCS-based pavement management decisions and the existing PCR-
based decisions.  
 
Efforts to process the automated data into a score as part of this research also highlight the 
additional effort that would be required to implement automated ratings from the raw data 
already being collected.  Quality control checks suggested that more stringent controls on 
data collection and a robust quality control plan would also be required. The net result is that 
implementing fully-automated distress ratings does not remove the need for manual efforts in 
the process. 
 
Final PCS models selected based upon their correlations with PCR-based decisions were only 
able to achieve 58% match of decision bins and 63% match of activity selected for asphalt and 
composite pavements. PCS performed far worse on concrete pavements, only reaching a 30% 
and 35% match for bin and activity, respectively. 
 
Data Quality 
Review of the automated data revealed several issues that had an impact on the results. 
Starting at the data collection step, automated data was not always collected in the same 
lane or direction as manual raters would have evaluated. In the case of automated data, it 
appears to have generally been collected in the outside lane of traffic.  With manual ratings, 
PCR procedure would be to rate the heaviest traveled lane, which may not always be the 
outside lane. This difference was observed in at least one field visit section. The overall 
impact of such collection differences may be small within the data set but would be a 
contributing factor to lower correlation. 
 
While some false-positive or false-negative results on crack detection and classification were 
expected, these were difficult to quantify in terms of impact because they didn’t occur in a 
consistent manner. During previous research, Pathview showed a strong ability to detect the 
existence of a distress but had much lower ability to correctly identify severity and extent 
(Vavrik et al. 2013). In the smaller sample size of that study, Pathview showed a 94 percent 
success rate at identifying PCR distress types.  However, the reports generated by Pathview in 
that research were created using a semi-automated methodology. Fully-automated processing 
for the current research did not report all distress types previously reported. 
 
As noted during quality control review of the data, there were several inconsistencies 
between data presented in Pathview and PCR evaluations conducted by ODOT. Differences in 
pavement type reported by the two systems reduced the accuracy of the PCS regression 
model. Discrepancies in lane and direction of travel rated by the two systems would further 
add inaccuracy to the PCS model. 
 
Researchers noted that in some cases, the data contained duplicate distress ratings, where a 
single distress in the pavement might be reported several times in the distress features 
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database.  This duplication wasn’t present in the whole dataset but appeared intermittently. 
The exact cause of this phenomenon was not able to be ascertained by the research team. 
This duplicated data may be present in some sections that were used in the development of 
PCS and/or the deterioration models. 
 
It is possible that the duplicated distress issue could be related to processing the data with 
varied versions of Pathview software or an error in the crack detection step that occurred 
before the data was delivered to the research team. Should ODOT adopt an automated rating 
system, additional quality control would need to be in place to verify the results in Pathview 
from AutoCrack and AutoClass. Given how inconsistently the problem existed in the data, 
initial quality control efforts may need to cover a significant portion of collected data to 
ascertain the root cause or verify the issue is not impacting new data. Manual editing of the 
distress features database in Pathview would be required to remediate duplicate distresses, 
which may be a time consuming process. 
 
Crack sealing also presented issues in the Pathview software as clusters of crack sealant were 
commonly mistaken for patching, and over band crack sealing that deviates from a straight 
line or followed a curved path (possibly errant sealant from the wand) often triggered an 
unassigned distress. A large percentage of unassigned distresses (4.52% of all distresses 
identified), in which the software identified an anomaly but did not assign a distress type or 
severity were identified in District 1, 2016 data. Pavement markings, railroad tracks, end 
dams, and expansion joints were also found to occasionally be identified as an unassigned 
distress.  
 
The pavement type assigned in Pathview software does not always reflect the road inventory. 
When they do not match, generally Pathview mistakenly identifies a composite pavement as 
an asphalt pavement. This results in a large percentage of distresses on a segment that are 
not consistent with the pavement type. While mistakenly identify the pavement type largely 
impacts composite pavements, distresses such as edge cracking, shattered slab, and wheel 
track cracking were also rated on jointed concrete pavements which is not consistent with 
the pavement type. Also, edge cracking was found to be rated on pavements with paved 
shoulders or curbs which is contrary to typical pavement management practice.  
 
Additional concerns were raised when attempting to use 2014 data for development of 
deterioration models. Comparison between 2014 and 2016 showed overall network score 
would increase, rather than deteriorate.  This is inconsistent with the PCR and maintenance 
activity data available for these years.  Researchers also noted that rutting saw a reduction 
on average between these data sets, despite a lack of maintenance that would cause such an 
improvement. Researchers believe this may have been caused due to differences between 
data collection vehicles, their calibrations, or the crack detection software between data 
collection years.   
 
In-depth analysis to identify the exact cause was beyond the scope of this project. However, 
it is worth noting that such issues will require additional quality control effort to catch and 
correct should ODOT implement a fully-automated rating system. Discrepancies in vehicles 
and their calibrations would need to be found and corrected before data collection begins, 
otherwise data may need to be recollected after the correction. Changes to processing 
software would need evaluated on sample data before processing the full collection cycle.  
Given the lengthy processing time encountered during this research, issues requiring 
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reprocessing of the full data set would lead to considerable delays—possibly months if the 
AutoCrack tool must be reran.  
 

 
Figure 7: A scatter plot showing the comparison of 2014 and 2016 automated scores 

showing that 2016 data had a general trend of being higher than 2014 data. 
 

 
Figure 8: A scatter plot showing the comparison of 2014 and 2016 manual PCR ratings 

displaying the expected decrease in score for the majority of sections over the two-year 
span while other sections improved scores with maintenance activities. 
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Selection of Rating Methodology 
Investigations into the current decision outcomes generated by manual PCR ratings indicated 
a strong reliance on overall score. Critical checks in the decision tree were found to be score-
based cutoff thresholds. For example, a score greater than or equal to 80 PCR for asphalt 
pavements would typically trigger a no treatment result and scores below 65 would often 
trigger an overlay with repairs.  Given the strong correlation between score and decisions, 
researchers evaluated the various methods considered for their correlation with PCR scores.  
Strong correlation in score would result in better correlation of decision outcomes. 
 
The sliding scale method did have a marginal improvement on initial correlation between PCS 
and PCR compared to the baseline.  However, researchers felt this method was of minimal 
improvement for the additional effort that would need to be considered.  One of the practical 
considerations for implementation is manual quality control.  This method adds additional 
complexity to manual ratings, increasing the difficulty of manual review of the automated 
process for minimal gain. 
 
The Pavement Condition Index (PCI) methodology produced scores from the automated data 
that followed a similar trend to the PCR scores, but with additional shifts in the data due to 
the differences in score calculations between the systems. PCI scores covered a wider range 
of values between 0 and 100 than PCR. A linear correction factor could be used to account for 
this and shift the thresholds of the decision tree to match the PCI methodology, but overall 
correlation was not better than the PCR-based regression model. 
 
However, the overall process at ODOT from data collection to pavement management is 
designed around a different methodology and different distress classifications.  Switching to a 
PCI-based method would require changes to the data processing software developed by the 
data collection vendor to report distresses in the correct classification.  Additionally, ODOT’s 
pavement management software would need considerable updates to allow for the new 
distress types and their individual deterioration curves. Given the differences in rating 
systems, the PCI-based deterioration models, once developed, would be inconsistent with 
existing score deterioration models.  Developing entirely new models for this system would 
take several years of data collection with processing software designed to report the correct 
data.   
 
For those reasons, researchers elected to choose a system more closely related to PCR.  
Taking the PCR distresses available from Pathview software’s detection and classification 
directly into the rating system eliminated the need for considerable change to that end of the 
process.  However, given the limited number of distresses available, a regression model was 
chosen to help fill the gap between the automated and manual data.  Several iterations of 
the regression model were compared not just for overall correlation with the manual data 
score, but also with the correlation of decision outcomes.  The final deducts represent what 
the researchers believe to be the best result in terms of decision outcomes with the available 
data and methodology. 
 
Of specific note is the extreme lack of distress types reported for concrete pavement. While 
all pavement types have less distress types than PCR available, this lack in concrete pavement 
leads to a considerable deficiency in correlation of score and pavement management 
decisions. Despite reporting seven distress types, only five reported by Pathview report values 
within the research data. Of those distress types, several appear to be difficult for Pathview 
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to classify correctly. Creation of a higher accuracy rating would need additional data to be 
reported by the distress detection and classification system.   
 
After establishing the methodology for PCS, including the presented deduct values, 
researchers compared both score and decision results.   
 

Table 5: Regressed coefficients for flexible pavements. 
Pathway Code Code Description  Original Regressed Regressed 

(constrained) 
Ravel 1 Raveling 10 12.0 12.0 
Bleeding 2 Bleeding 5 5 5 
Patching 3 Patching 5 5 5 
Rut 6 Rutting 10 15.8 15.8 
WheelT 9 Wheel Track 

Cracking 
15 10.3 7.7 

Long 11 Longitudinal 
Cracking 

5 0.0 3.0 

Edge 12 Edge Cracking 10 0.0 3.0 
Trans 14 Thermal 

Cracking 
10 18.1 16.1 

PotHoles 15 Potholes 10 10 10 
Recommended 
Final  

  
  

  
Total Sections   5172 5172 5172 
Percent Same Bin   34.3 57.5 58.3 
Percent Same 
Activity 

  55.6 63.2 63.3 

 
 

Table 6: Regressed coefficients for composite pavements. 
Pathway Code Code Description  Original Regressed Regressed 

(constrained) 
Ravel 1 Raveling 10 1.7 15 
Patching 3 Patching 5 5 5 
Rut 5 Rutting 10 21.1 21.1 
Slab 7 Shattered slab 10 2.1 2.1 
Trans 9 Tvs. Cracking – unjointed 20 21.9 21.9 
Long 12 Longitudinal cracking 5 15.2 5 
Recommended 
Final  

    

 

  

Total Sections   4701 4701 4701 

Percent Same 
Bin 

  52.3 58.3 51.0 

Percent Same 
Activity 

  55.6 63.3 59.5 
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Table 7: Regressed coefficients for concrete pavements. 
Pathway Code Code Description  Original Regressed Regressed 

(constrained) 
Patching 3 Patching 10 10 10 
  FAUA 5 Faulting 10 24.7 22.0 
TSpall 7 Transverse Joint Spalling 10 7.1 5.0 
Long 11 Longitudinal Cracking 10 12.3 8.0 
Corner 12 Corner breaks 10 10 10 
LSpall 13 Longitudinal Spalling 5 0.0 3.0 
Trans 14 Transverse Crack - Plain 

Concrete 
15 0.0 3.0 

Recommended 
Final  

      

 

Total Sections   467 467 467 

Percent Same 
Bin 

  21.4 29.1 29.6 

Percent Same 
Activity 

  26.8 36.6 35.1 

 
Decision Outcomes 
Additional output from the decision tree processing tool allowed researchers to analyze the 
frequency decision nodes were considered in the final decision outcomes.  In both PCR and 
PCS analysis showed that the key drivers of decision outcomes, outside values such as 
pavement type and general traffic volume, were score and total structural deduct value.  
Distress checks only accounted for 14 percent of nodes tested before decisions were reached.  
A majority of sections (64%) that failed to achieve the same decision in PCS as PCR failed to 
do so at a score-based check.  This highlights the importance of high correlation between 
automated and manual scores to arrive at the same decisions.   
 
Adjustments to the score-based decision nodes were considered to aid in correlation of 
decisions.  These adjustments were calculated from the best fit line of the correlation plot 
between PCR and PCS data. To test the impact of these adjustments, researchers analyzed a 
data set comprised of all flexible pavement from the full 2015/2016 data set. 
 
Because the data had already been regressed to a best fit, these adjustments were minimal. 
The smallest adjustments were required at the “do nothing” cutoff score (PCR score of 80). 
The calculated adjustment to this increased the threshold by 0.25 points. The most significant 
change was to the lower end threshold that typically triggers overlay with repairs (PCR score 
of 55), increasing by just over 1 point for the PCS. 
 
While this adjustment moved the threshold to be along the best fit line, changes in decision 
correlation were minimal.  Less than a tenth of a percent shift in the number of decision bin 
and activity matches between PCS and PCR were noted with the threshold adjustments 
applied to flexible pavements in the research data. That small shift in the total resulted in a 
negligible decrease in the model’s percent match PCR decisions, rather than an expected 
improvement. This led researchers to conclude that changing these values is unnecessary 
because the regression model causes the best fit line to be at/near the existing threshold. In 
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other words, the regression has succeeded in minimizing error around this threshold, leaving 
the remaining difference in decision outcomes to be driven primarily by variance in the data. 
 
Review of the structural deduct differences between PCS and PCR showed a lack of 
correlation due to the regressed coefficients targeting to reduce error in score, not to reduce 
error in structural deduct. The correlation was also impacted by the smaller number of 
structural distresses reported. This lack of correlation prevented researchers from applying a 
correction factor to the decision tree thresholds based upon the line of best fit in the 
correlation plot.  
 
In the case of flexible pavements, which displayed the strongest correlation, the results 
showed an r-squared value of only 0.19 with a slight decrease in average deduct. Composite 
and concrete pavements fared far worse, with r-squared values of 0.08 and 0.04, 
respectively.  Heavy banding in the data suggests that distresses unreported by Pathview, 
particularly for composite and concrete, are a significant portion of the structural deducts 
reported by PCR raters. 
 
Poor correlation in structural values reported did not support any conclusive changes to the 
decision tree. In the case of flexible pavements, there is some potential to pick a new 
threshold from the data but the impact on overall correlation of decision is minimal.  Only a 
small percentage (<1%) of flexible sections would be impacted by the change.  
 
For composite and concrete pavements, little justification exists to pick a new threshold. It 
appears that PCR decisions on when structural deducts should trigger more extensive 
treatments are largely dictated by distresses not detected/reported by Pathview. This 
prevents an automated system from providing the same decision outcomes when the 
treatment would have normally been decided based on structural defects in these pavement 
types.  
 
Deterioration Modeling 
For deterioration modeling, the original proposal of using 2014 and 2016 data to create the 
models was determined to be infeasible due to the inconsistencies in 2014 data. Because of 
the lengthy processing time required to process the data with Pathview’s AutoClass tool, only 
a single district of 2018 data was available to fill in for deterioration modeling purposes.  This 
data exhibited deterioration much more in line with the corresponding PCR data. 
 
To generate accurate transition probability matrices (TPMs) requires a significant amount of 
data to cover all the possible combinations of pavement families, distress 
types/severities/extents, and overall score distribution.  Due to the limited nature of PCS 
data available for this study, generating new TPMs proved to not be a feasible solution.   
 
However, researchers did find that existing TPMs taken from PCR may still be used with PCS 
data to a degree. For Markov models, there are two components: the TPM which describes the 
probability of change between distress states, and the array of deduct values for each given 
state. This allows PCS to use the rate of change derived from the TPM, but with the deduct 
values from the regression model.  
 
Rather than compute the result via distress deteriorations using individual TPMs, researchers 
elected to generate a model derived from the TPM where PCS is a function of apparent age.  
This model was generated from the “null” state for each distress, where a pavement starts at 
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zero distress for all types. The worksheet provided by ODOT for deterioration models already 
contained the correct equations to compute individual distress deterioration as a function of 
age.  The sum of these deducts each year would result in the predicted total deduct for that 
age of pavement. 
 
Two changes were made to the model to account for the differences between ratings 
systems.  First, distresses that cannot be detected or are not reported by Pathview software 
were eliminated from the total.  Additionally, the regressed deduct values from PCS were 
used. The slope of the deterioration curve was minimally impacted, but these changes did 
cause a divergence in overall deterioration over the 40-year span to predict higher scores 
than the PCR model. A large portion of this divergence appears to be created by removing the 
distress types, with a much smaller portion being caused by the change to use regressed 
deduct values. 
 
The variance of the deterioration from the PCR deterioration is expected for a generic model 
derived from a small sample of data.  Currently, PCR deterioration uses models for each 
pavement family that were developed using a large amount of historical data. The generic 
model used in this research may be taken as a proof of concept for developing similarly 
focused models using a blend of automated deduct values and existing TPMs as a stopgap until 
sufficient PCS data is available to generate quality TPMs purely from automated data. 
 
These blended models produced slopes similar to the actual data but are not sufficient to 
predict score based solely on age. Calculating apparent age along the model by finding the 
age value where the model produces the same score resulted in a better prediction in the 2-
year projection used with 2016 and 2018 data comparisons than using the section’s actual age 
would. This at least shows the model is feasible for short term predictions, but more data 
would be needed to verify longer-term performance or build more accurate models. 
 
Validation 
For field verification, a single, generic model was developed using a PCR TPM from one 
pavement family with significant source data and the regressed deduct values. The model 
selected is from the priority network and covers sections from all districts with the last 
activity being an overlay without repairs. This model was then used to project the 2021 PCS 
score and resulting decisions from 2015 PCS data.  Field locations were selected where 
differences were noted between the 2021 projected PCR decisions and 2021 PCS decisions. 
 
Researchers noted that in both PCR and PCS, deterioration trended towards recommending an 
overlay with repairs (activity 60) frequently.  This is apparent when looking at the decision 
trees.  There are several ways to trigger this activity related to score, depending on which 
decision tree is used.  In most cases, a score below 65 or a structural deduct score above 15 
would trigger this result independent of contributing distress.  Because PCS deducts are 
largely flagged as structural and have increased weight in the regression model, PCS tends to 
trigger the treatment on structural deduct value at a rate higher than PCR when using the 
TPM to project structural deducts.  However, PCR’s overall score deteriorates at a faster 
rate, resulting in triggering the same treatment for a different reason. 
 
This resulted in a shift in the planned field validation process.  Because both systems trended 
towards the same activity, too few sections met the original criteria for selection for field 
visits. These criteria were focused on sections where the two systems had differing decision 
outcomes and formed a representative mix of pavement type and general condition.  
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Instead, researchers selected only the small set of sites that displayed differences between 
PCS and PCR for field visits. Details on the site selection can be found in Appendix 4, along 
with more detailed analysis of the comparison between projected and actual conditions. 
 
The field verification highlighted a considerable discrepancy between the projected structural 
deducts and the field conditions. While normal PCS calculations appear to report lower 
structural deducts in general due to less distresses contributing, the projection used for field 
comparison tended to over-report structural distress. More extensive repairs were 
recommended by the PCS model than field conditions warranted due to this over-reporting. 
Because the model used for projecting PCS forward to present was generic, and taken from 
only one pavement type, some portion of the over-reporting may be attributed to model 
selection.  
 
In attempts to modify the decision tree’s structural deduct checks, it was noted that the 
structural scores generated by PCS did not correlate well with decision outcomes from manual 
ratings.  The issues noted here with deterioration model over-reporting structural deduct are 
likely attributed to shortcomings with the data available for structural distresses.  
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Recommendations 
 
Implementing an automated rating system must be an ongoing process, rather than a turn-key 
operation. The sensitivity of an automated system to changes in data collection and 
processing necessitates a robust procedures and quality control plan that covers all steps of 
the process. Poor performance of automation at rating concrete pavements necessitates that 
a semi-automated approach to supplement automated data with manual ratings. Annual data 
collection by all collection vehicles on well-known, manually-rated field validation sections as 
part of a robust quality control/assurance plan should be considered for both continuous 
improvement of the automated rating system and for verifying the consistency of data 
collection from year to year. 
 
Automated crack detection and classification is still a relatively new and constantly 
developing technology. Previous research to compare technology between competing systems 
was conducted in 2013 (Vavrik et al. 2013). Similar research may be worthwhile to analyze 
new technologies if they become available. 
 
Improvements or changes in both hardware and software will require updates to automated 
models to account for shifts in data. Some manual ratings will be required to verify these 
shifts and to inform adjustments to the automated distress and deterioration models. Using 
field verification sites that are rated by both manual and automated methods, this process 
could be conducted in parallel to the quality control plan. Some discrepancies between 
manual and automated ratings are expected, so a margin of error should be established that 
would trigger changes to the system. 
 
Higher quality deterioration models will require additional automated data be incorporated 
over time. During this research, a lack of data prevented the development of new transition 
probability matrices.  Over time, enough data should become available to develop these 
directly from PCS data, rather than borrowing from PCR deterioration models. Any new 
deterioration models implemented should be compared to the existing models to gauge the 
impact of the change on cost/benefit analysis used by pavement management software as 
shifts in these curves would change the benefit area calculation. 
 
During this project, researchers noted several instances where simple human error could have 
considerable impact in terms of time lost or data reliability.  Pathview software has many 
processes and options that must be done to facilitate PCS calculation accuracy.  When 
processes take hours or days to complete before verification can be done, small mistakes can 
compound into significant delays.  A procedures plan with specific details and order of 
operations would help reduce this risk from year to year or in the case of change in processing 
staff.   
 
While the PCS manual is tailored specifically to the goals of this research, it may serve as a 
basis for a portion of a procedures plan. The manual covers the portion of the processing 
starting from running AutoClass all the way through to generating decisions with the decision 
calculation spreadsheet. Additions would be needed to cover data collection, quality control, 
processing with AutoCrack, and utilizing the PCS data in pavement management software. 
The process for updating the regression models for PCS is also included in the manual. 
Generation of deterioration models using transition probability matrices has already been 
covered in previous research (Chou, 2008) but should be added to a procedures plan in a 
simplified form. 
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As observed from 2014 data comparisons, PCS will only be as reliable as the data used as an 
input.  Quality control must begin at data collection and continue through the process. Data 
collection staff should be maintaining equipment calibrations in line with manufacturer 
recommendations.  In the case data collection is conducted by a contractor, the contractor 
should provide ODOT with records of these calibrations.  The annual collection of field 
validation sites with both manual and automated PCS ratings would allow ODOT to verify the 
vehicle calibrations meet expectations.  
 
Field validation sites also offer an opportunity for manual surveys to regularly be compared 
with PCS data, even after switching statewide collection to a semi or fully automated rating 
system. This allows the ongoing development of PCS as additional distress types or new 
technologies become available. These comparisons also offer an opportunity to provide data 
collection vendors feedback on their crack detection and classification algorithms, which may 
help improve future automated distress ratings. 
 
Ideally, these sites would have a mix of representative pavements that reflect the most 
common pavement designs in the network of varied age and condition. Considering the 
practical requirements, site selection may be skewed towards picking areas that are more 
easily collected as part of routine, annual collection efforts. Manual rating of the selected 
sites would be conducted and then compared to data pulled from the annual collection of 
automated data. Selected test sections should be 528 feet (160.93 meters) in length, at the 
minimum. The maximum length of a section should be limited by the length of consistent 
construction and age of pavement, as well as limitations of manually rating the section. 
 
Thorough field ratings of these sections should be conducted initially, with annual ratings 
thereafter. Continued annual monitoring may be via field visits or from manual review 
collected imagery and sensor data delivered by the collection vehicle.  The intention of 
manual review is to ensure the field conditions are well established as a baseline to compare 
against the automated data. Existing test sections constructed as part of other research and 
federal programs such as long-term pavement performance (LTPP) research sites may be 
considered but may not adequately represent typical construction practices throughout the 
network. 
 
Catching deficiencies in equipment calibration or condition early is essential to maintain a 
timely, accurate data collection.  At least one field validation site should be utilized to verify 
vehicles before data collection begins in earnest. Any sites chosen for this preliminary 
verification should contain a mix of various distresses. Precise field measurements of 
distresses such as rutting and faulting must be available for comparison to the automated 
results for sections used for this verification. A measurement of the section’s roughness may 
be appropriate to allow verification of the vehicle for federal reporting purposes in addition 
to the checks for automated distress reporting.  
 
Data collected on these verification sites should be processed through the full process to 
arrive at PCS rating. Reported distress classification and quantities from Pathview’s AutoCrack 
and AutoClass processing can be reviewed by quality control staff and compared to both 
manual ratings and historical automated data for the same site. The PCS calculation tool also 
offers a raw quantity output per section, which may be similarly compared to manual and 
historical automated data. As part of the procedures plan, a maximum tolerance for the 
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difference between reported and actual values should be established to trigger additional 
scrutiny of the collection vehicle and its calibration. 
 
Once data has been verified and processed through Pathview software to generate distress 
reports at tenth-mile intervals, it should be processed through the PCS calculation tool. The 
output of the tool will give a score, structural deduct value, and individual distress severity-
extent ratings. These ratings should be compared with manual ratings of the section as well 
as any historical PCS ratings available. Quality control should ensure that conditions and 
distresses did not improve year over year without maintenance activities. Conditions such as 
rutting, roughness, and faulting should be within a tolerance factor of historical data and/or 
field measurements. 
 
The tools for calculating PCS and decision outcomes provided by the research team were 
developed for research purposes and may not meet the future needs of ODOT. Consideration 
should be given to how to integrate proper software into ODOT’s existing practices to address 
these needs. The implementation in Visual Basic for Applications has limits that lead to longer 
processing times and less flexibility than would be present were it to be implemented using 
more robust programming languages such as C#.  
 
Future development of such robust software could integrate the PCS and decision tree 
calculations with other software and submit data directly to pavement management software. 
Potential exists to automate development of transition probability matrices using PCS data 
stored as part of such software. Tools may be included to aid in tracking field validation 
sections and other quality control tasks. 
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Appendix 1: Literature Review 
 
Pavement condition data is one of the prime elements of a pavement management system. 
Currently, most parts of the pavement condition data are collected by examining pavement 
surface images either through foot-on-ground manual surveys or with the help of computer 
programs. Pavement data collection normally includes gathering data on surface cracking and 
other distresses for both asphalt and concrete surfaced pavements, as well as rutting for 
asphalt pavements, and faulting for concrete pavements. Distress Identification Manual for 
the Long-Term Pavement Performance (LTPP) (FHWA, 2003) provides instructions and 
procedures for pavement condition surveys. National Cooperative Highway Research Program 
(NCHRP) published Synthesis 334 (McGhee, 2004) which describes the techniques available for 
automated pavement data collection.  
 
The Moving Ahead for Progress in the 21st Century Act (MAP-21) which became law on July 
2012 includes a Declaration of Policy: “Performance management will transform the Federal-
aid highway program and provide a means to the most efficient investment of Federal 
transportation funds (FHWA, 2017)” The main objectives that led to the MAP-21 law include 
increasing the transparency and accountability of states for their investment of federal 
taxpayer dollars into transportation infrastructure and services nationwide, and ensuring that 
states invest money in transportation projects that collectively make progress towards 
achieving the national goals. The final rule, effective since May 20, 2017, requires State DOTs 
to submit the Interstate System’s pavement condition data annually and non-Interstate 
National Highway System’s data biennially.  
 
There are three approaches to collecting pavement condition data: manual, semi-automated, 
and automated pavement data collection methods. Although manual data collection methods 
have unique characteristics that agencies depend on, currently most states are leaning 
towards automated data collection systems. Comparisons of automated and manual pavement 
data collection methods are provided in Table 1.. These methods can be compared based on 
time, safety, objectivity of measurements, cost, data size, data handling, and agency’s point 
of view.  
 

Table 1.1: Comparison of automated and manual pavement data collection methods 
(Attoh-Okine, N. and Adarkwa, O., 2013). 

Category Automated Data Collection Manual Data Collection 
Time Reduces data collection times Longer data collection times 
Safety Much safer means of collecting data Personnel at risk collecting data 
Objectivity Objective measurements Usually subjective since it 

depends on experience of 
personnel 

Cost Very expensive equipment costs Relatively less expensive 
Data Size Vast amounts of data collected & 

stored depending on capacity of 
equipment 

Agencies may only be able to 
collect smaller amounts of data 
at a time 

Data Handling Not subject to transcription errors Subject to transcription errors 

Employers Suitable in agencies seeking to 
downsize number of employees 

Source of employment for rating 
staff 
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Category Automated Data Collection Manual Data Collection 
Coverage May cover footprint of data collection 

vehicle. Multiple runs sometimes 
needed to cover entire road width 

Inspectors can cover entire width 
of road section relatively easier 

 
Manual Data Collection 
 
Visual assessment of pavements began with the original American Association of State 
Highway Officials tests performed in 1920 and the development of the present serviceability 
index (PSI). This index is based on some objective quantity including roughness, rutting, 
cracking, and patching. A panel provided a qualitative score based on their ride experience 
(Hallin et al., 2007). Many indices including pavement condition index (PCI) were developed 
after the PSI; however, those were mainly based on the manual survey of pavements.  
 
The visual and manual pavement data collection can be categorized into the following 
techniques: 
 

• Windshield assessment – Surveyors travel the roadway section by car, traveling at a 
lower speed.  This allows the surveyors to perform 100% assessment and take notes 
on observed distresses. Survey forms are filled out for every pavement section of 
pavement management system.  

• Walk-over assessment – Surveyors walk over a surveyed length of pavement section 
and record all surface distresses on a survey form. The survey length can vary from 
agency to agency depending on the location of the pavement section, policy of the 
agency, and budget available for the survey. An agency can survey 100% of their 
network or it can choose a sample section. 

 
Semi-Automated Data Collection 
 
In a semi-automated survey, windshield survey is replaced by an automated pavement 
imagery collection. Pavement imagery is collected using high-resolution camera(s) mounted 
on the data collection vehicle, and the collected images are surveyed manually. Semi-
automated data collection not only provides increased safety but also results in more 
accurate and efficient assessment of pavement condition compared to the windshield survey. 
In semi-automated methods, pavement condition data are collected in two phases. In the first 
phase, pavement imagery and sensor data such as roughness, rutting, and faulting data are 
collected. The second phase involves the manual rating of the images, and identifying surface 
distresses from the imagery. 
 
Image viewing requirements depend on whether the images are captured on film, tape, or 
digital media. The manual element of distress data reduction from images typically involves 
the use of multiple image monitors and at least one computer monitor for data display. There 
may be a substantial loss of resolution compared with what is visible to the human eye from 
the same source. Almost all image collection procedures now require that the images be a 
date, time, and location stamped. The location stamp is typically coordinates derived from 
GPS instrumentation on the survey vehicle. The identification of various distress types, as 
well as their severities and extents from images, requires observers or raters who have been 
well trained in both pavement distress evaluation and in the use of the workstation hardware 
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and software. Such surveyors require extensive training in at least some aspects of the 
process.  
 
Sometimes agencies collect imagery and sensor data in one lane, and this data is applied to 
all lanes while performing the manual survey. However, pavement maintenance and 
rehabilitation strategies are becoming increasingly more localized and lane-based; therefore, 
the necessity of collecting data from all lanes is increasing. As the semi-automated method is 
time-consuming and requires significant manual surveys, it has given way in recent years to 
the digitizing of images for better data handling and processing. 
 
Automated Data Collection 
 
In a fully automated pavement condition survey, surface distresses are identified and 
quantified through analysis with very little or no manual work. Typically, automated distress 
detection is performed by software capable of identifying and quantifying the crack length, 
depth and width, as well as the depth and extent of surface roughness, raveling, faulting, and 
rutting. Most crack detection system rely on 3d laser scans of the pavement providing both 
range and intensity information in a grid pattern as a vehicle drives at highway speed. 
 
Over the past decade, a significant amount of research and development work has occurred in 
the field of fully automated pavement distress detection and measurement. This emphasizes 
the difficulties involved in manual reduction of pavement data and resources required to 
accomplish the associated manual tasks. Table  shows distress data requirements by the 
various standards/agencies. 
 

Table 1.2: Pavement Condition Data Requirements by Various Standards/Agencies 
Standard/Agency Distress Data Requirements 
Ohio Department 
Transportation 
Requirements 
(Chou et al. 2008) 

• Automated collection of pavement smoothness, rutting, and faulting 
measurements on the interstate highway system and the highway 
segments required for HPMS reporting 

• ODOT’s current system also offers inventory collection capabilities, 
which ODOT has expanded to refine their geographic information 
system (GIS) pavement site location inventory and their statewide 
guardrail inventory 

• Future expansions available to ODOT include inventories of guardrails, 
signs, pavement markings, traffic controls, medians, curb and gutter, 
drop inlets, bridges, and overpasses  

• Video images from this system may also provide traffic litigation 
assistance 
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Standard/Agency Distress Data Requirements 
Federal Highway 
Pavement 
Management 
System (HPMS) 
Requirements 
(FHWA 2012) 

• The HPMS, developed in 1978, supports the 23 U.S.C. 502(h) 
requirements for collecting “a biennial condition and performance 
estimate of the future highway investment needs of the nation” 

• Each State is required to prepare an annual submittal of HPMS data in 
accordance with the procedures, formats, and codes specified in HPMS 
Field Manual 2016 

• Actual values are to be reported for the various roadway attributes 
(i.e., section data) that are collected in HPMS 

• Each State needs to submit their Linear Reference System (LRS), which 
enables the attribute data to be represented in a geospatial format 

• Pavement condition-related data include section data for functional 
system, urban code, facility type, structure type, through lanes, IRI or 
PSR for roads on the NHS with a posted speed limit < 40 mph, surface 
type, rutting, faulting, cracking percent, NHS (national highway 
system) and a dual-carriageway, LRS-enabled, and geospatial routes 
dataset 

AASHTOWare 
Pavement M-E 
Design Software 
Implementation 
Requirements 
(AASHTO, 2008) 

• Pavement performance measures in Pavement ME Design include slab 
cracking, faulting, and IRI for PCC pavements; IRI and punchouts for 
continuously reinforced concrete pavements; and rutting, bottom-up 
fatigue cracking (alligator cracking), load-related top-down cracking 
(longitudinal cracking in the wheelpath), thermal cracking (transverse 
cracking), and IRI for AC pavements.  The performance data is typically 
used for calibrating the performance models for pavements, traffic 
and climate.  

• Pavement layer thicknesses and properties also play a critical role in 
the analysis  

MAP-21 
Requirements 
(FHWA 2017) 

• Based on MAP-21 final rule, the data requirements for the Interstate 
and non-Interstate National Highway Systems are IRI, cracking percent, 
rutting, and faulting in one direction with missing, invalid, unresolved 
data no more than 5.0 percent 

• MAP-21 final rule also requires HPMS data collection and submittal 
annually for the Interstate System and biennially for the non-Interstate 
National Highway System 

 
 
Evaluation of Technologies 
Four major vendors in the United States provide 3D line-scan automated distress rating 
systems: 
  

• Dynatest Consulting, Inc. 
• Fugro-Roadware Inc. 
• Mandli Communications, Inc., and  
• Pathway Services, Inc.  
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These vendors also offer a range of 2D systems; however, because of reported limitations of 
the 2D line-scan systems, only their 3D line-scan systems are described below. WayLink, Inc. 
has also been included in these descriptions due to the advanced nature of their technology. 
Dynatest, Fugro, and Mandli incorporate Pavemetrics Laser Crack Measurement System (LCMS) 
3D sensors, while Pathway and WayLink have developed unique 3D sensors in addition to 
offering LCMS sensors. Because Dynatest uses the same LCMS sensors as Fugro and Mandli, 
their system is not discussed below. 
 
Fugro-Roadware Pave3D System 
Fugro began offering the Pave3D System in 2010, incorporating the Pavemetrics INO LCMS 
sensors. Currently, the system can include 2D and 3D downward pavement imagery, combined 
with Fugro’s forward cameras, global positioning sensors, an inertial measurement suite, 
ground penetrating radar, and LIDAR equipment (Figure 1.1).  
 

 

Figure 1.1: Fugro Pave3D sensor working principle (Adopted from Fugro Roadware, 
2017). 

 
The ARAN 9000 survey vehicle can be configured with a maximum of six right-of-way (ROW) 
Sony high-definition cameras using charge-coupled device (CCD) broadcast-quality image 
sensors. Each camera is housed in a weatherproof housing that includes an extended visor to 
shield the lens from the direct sun above. Furthermore, forward-facing cameras are mounted 
on a platform located in the front of the vehicle (thus reducing the risk of images being 
obstructed by the vehicle). Three HD charged coupled device (CCD) broadcast-quality 
cameras provide extremely high-quality images over a range of lighting conditions, as the 60 
frames per second (fps) free-running frame rate is able to adapt to the local environmental 
lighting conditions better than trigger-based cameras. Additionally, these ROW images are 
calibrated and can be used to determine the offset and dimensions of roadway assets. Image 
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capture is linked to the ARAN distance measuring instrument (DMI), with images typically 
captured at a rate of 200 frames per mile.  
 
The system can be configured to collect global positioning system (GPS) coordinates with a 
stand-alone accuracy of 16 feet or better. The inertial reference system also employs 
gyroscopes, accelerometers, software, and algorithms to measure pavement cross fall, 
transverse profile, vertical alignment (grade), and horizontal alignment (curve radius) of the 
roadway. To assist operators with routing, Fugro provides GPS coordinates and pre-
established routing information loaded into the Fugro’s ARAN data collection software. 
 
Distress rating software is available and is continuing to be expanded by Fugro and 
Pavemetrics to develop and incorporate the 3D capabilities of the LCMS sensors. Currently, 
they report the ability to automatically detect crack type (transverse, longitudinal, and 
alligator) and severity, raveling, potholes, rutting, and faulting. Their semi-automated 
approach reportedly identifies corner cracks and block cracking. Distresses such as debonding, 
pumping, bleeding, patching, crack sealant distress, and punchouts require manual 
identification. 
 
Mandli Communications LCMS 
Mandli offers a 3D distress collection and identification system that includes the Pavemetrics 
LCMS and associated subsystems. Typically, these subsystems are mounted on a full-sized van, 
selected by the purchasing agency (Figure 1.2). 
 
They typically provide up to three (3,296 x 2,472 pixels) industrial ROW cameras, mounted 
above the rearview mirror. This camera requires little operator adjustment. Image capture is 
linked to Mandli’s DMI, and collection intervals can be controlled by the operator. ROW 
camera images are stored digitally in JPEG format and typically stored at a 5:1 to 15:1 
compression ratio.  
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Figure 1.2: Mandli LCMS distress collection system (Adopted from http://mandli.com). 
 
The Mandli Applanix POS LV 220 collects real-time differential GPS coordinates using satellite 
positions and ground station or satellite-based augmentation systems to provide sub-meter X-
Y-Z accuracy. If post-processing is employed, the reported X-Y accuracy is about 0.8 ft. To 
maintain precision when satellite lock is lost, Mandli’s DMI and POS LV inertial measurement 
unit are employed. These same instruments can provide pavement crossfall, vertical 
alignment (grade), and horizontal alignment (curve radius). 
 
Mandli provides pavement profiles at 0.07-inch intervals (60 mph) using Dynatest’s rear-
mounted Mark IV Portable Road Surface Profiler (RSP). Two Selcom 16-kHz laser sensors and 
high-quality accelerometers are mounted in this system and positioned in selected wheelpath 
locations. The RSP system reportedly meets ASTM E 950-09 Class 1 specifications, providing a 
vertical displacement resolution of 0.002 inches. It is rated with an ASTM E1556-11 Code of 
L111.  
 
Mandli employs the Pavemetrics LCMS 2D and 3D pavement imaging system, sampling at 5,600 
(alternately 11,200) transverse profiles per second. This subsystem reportedly meets the 
requirements of ASTM E 1656-11 C 2321. Distresses automatically reported by this system 
include block/transverse, longitudinal, and wheel track cracking, rutting, faulting, crack 
sealing deficiency, and potholes.  
 
Two separate software applications are utilized to analyze the collected data and 
automatically detect pavement distresses. The data is first run through RoadAnalyser, which 
automatically detects cracks and assigns crack width by analyzing the intensity and range 
data. RoadAnalyser outputs four sets of viewable images: range, intensity, and both range 

   
 

   
 

http://mandli.com/
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and intensity with detected distress overlay. The data is then run through Mandli’s internally 
developed classifier application which analyzes the marked cracks and classifies them 
according to the client specifications. Rutting and transverse profile information are also 
processed and reported. 
 
Pathway Systems 3D Data Acquisition System 
The Pathway, out of Tulsa, Oklahoma, offers the PathRunner XP collection vehicle, shown in 
Figure 1.3, with an expanded top to allow for higher ROW camera angles while protecting 
cameras from the elements. This system includes high-resolution forward cameras, 
supplemented with GPS capabilities and pavement roughness and texture measurement. They 
offer a wide range of pavement 3D imaging subsystems based on industry standards and their 
proprietary Pathway 3D Data Acquisition System. Supplemental collections systems such as 
LIDAR and ground penetrating radar are also available. 
 
The Pathway offers both forward ROW and 360-degree imaging. Up to three industrial forward 
cameras (3,296 x 2,472 pixels) can be mounted in the high-top extension, with optional side 
and rear view cameras as well. Wide-angle lenses can be used to collect more panoramic 
images. These images can also be used to determine offset and dimensions of roadway assets, 
including guardrail, signs, and edge of a roadway. 
 
The PathRunner XP typically includes an enhanced GPS that uses real-time differential 
corrections from base stations, satellites, or transmitters to achieve true sub-meter accuracy. 
Post-processing using auxiliary input and onboard inertial measurement unit (IMU) data is also 
available to further improve the accuracy. Pathway uses an inertial measurement unit 
(including military grade or optical gyroscopes) and its DMI to retain accuracy when satellite 
lock is limited or lost. This system is also capable of accurately providing pavement crossfall, 
curve radius, and roadway grade. 
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Figure 1.3: PathRunner XP collection vehicle. 

Pathway’s longitudinal profiling system typically collects pavement profiles at 0.067-, 0.031-, 
and 0.16-inch intervals at 60 mph using Selcom 16-, 32-, or 64-kHz spot lasers. They can also 
provide Selcom Roline lasers for agencies with significant longitudinal texturing or grooving. 
All spot sensors meet the ASTM E-950-11 Class 1 measurement sampling and resolution 
requirements and achieve an ASTM 1656-11 rating of L122, reporting such roughness indices as 
IRI (quarter- and half-car), Ride Quality Index (RQI), and Ride Number. Additionally, Pathway 
can collect 0.016-inch samples and report mean profile depth at highway speeds, with one or 
more 64 kHz spot lasers. Their ground-penetrating radar option includes both high- and lower-
frequency antennas to collect pavement layer information at a range of depths. 
 
Pathway offers 2D and 3D downward pavement image collection systems. Their advanced 
system collects up to 6,000 transverse profile points at more than 9,000 cycles per second, 
recording longitudinal elevations at 0.125-inch intervals while traveling at 60 mph. Pathway 
reports their ASTM E 1656-11 crack measurement capabilities as C3331. Sensors draw minimal 
power and can be supplied from the vehicle electrical generation system. 
 
Pathway continues to expand and refine their pavement distress identification software to 
incorporate the 3D capabilities of their new sensors. With an 80 percent accuracy level, they 
anticipate the ability to automatically detect cracking (wheel track, longitudinal, edge, 
thermal, and intermediate transverse cracking), rutting, potholes, crack sealing deficiencies, 
punchouts, shattered slabs, and joint spalls. Reportedly, minimal quality control (QC) is 
required to identify raveling, bleeding, patching, reflective cracks, surface deterioration, and 
patching. Identification of debonding requires both manual and automated processing, as 
pressure damage cannot be easily discerned using automated data collection. 
 
 
WayLink PaveVision3D System 
WayLink has developed the PaveVision3D System for identifying pavement distresses and 
other measurements, mounting it on a standard full-sized digital highway data vehicle 
(DHDV), as shown in Figure 1.4. This system reportedly offers the highest 2D and 3D imaging 
resolution on the market. Currently, WayLink is developing algorithms for semi-automated 
and automated identification of pavement surface distress, severity and extent (DSE).  
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Figure 1.4: WayLink PaveVision3D DHDV. 
 
WayLink’s ROW camera is mounted in the vehicle cabin, collecting images through the 
windshield. This camera provides 1,920 x 1,080 pixel images, recording them either 
continuously or using triggered intervals, and storing JPEG files (or other standard formats) 
with a typical compression ratio of 10:1.  
 
To ensure accurate positioning, the WayLink system includes a standard 10 Hz industrial GPS 
that provides 3.3-ft (1-m) accuracy. When combined in real time with augmented satellite or 
ground station positioning input, the accuracy can be within 4 inches. Additional post-
processing of the data can further improve their locational accuracy. Presently, WayLink 
offers crossfall, grade, and curve radius collection services using IMU output. 
 
WayLink is in the process of confirming the precision and accuracy of longitudinal profiles 
collected by their Ultra 3D image height sensors and their correlation to the industry standard 
Selcom spot laser road profiling systems. They report that the PaveVision3D Ultra sensors 
exhibit substantially less electronic “noise” than the standard spot lasers, making them a 
viable option for longitudinal profiling and even for texture measurements typically collected 
with 64 kHz spot lasers, as the Ultra 3D sensors operate at 30 KHz data rate for the entire 
pavement surface. 
 
WayLink, in their PaveVision3D Ultra System, has two sensor cases mounted in the back of 
their DHDV van. Each sensor case has two subsystems for data acquisition: 2D and 3D. The 2D 
subsystem reportedly provides laser imaging at 0.04-inch (1-mm) resolution in both the X and 
Y directions using one 2D camera, one laser assembly, and required optics. WayLink’s 3D 
subsystem reportedly includes laser imaging at 0.04-inch resolution in the X and Y directions 
(0.01-inch resolution in the vertical direction), employing four 3D cameras, one laser 
assembly, and required optics. The use of multiple 3D cameras in a single PaveVision3D Ultra 
3D sensor allows the four cameras to collect synchronously, operating at 30 KHz collection 
rate over the entire pavement surface. In other words, when 3D line profile data from the 
four cameras are stitched transversely and combined longitudinally, the longitudinal sampling 
interval reportedly falls below 0.04 inch, with a system collection rate of about 4,160 
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transverse profile points recorded at 30,000 samples each second. Combined, ten 2D and 3D 
cameras are included in a pair of PaveVision3D Ultra sensors. This configuration reportedly 
meets ASTM E 1656-11 Code C1111.  
 
Recent Research on Automated Distress Detection 
 
Crack Detection 
Pavement surface cracking is one of the most important distresses monitored on asphalt 
pavements. Surface cracking is an indication of layer failure since cracking is one of the 
design parameters of asphalt surfaces (Austroads 2012). Significant funding is allocated by 
transportation agencies to assess pavement condition through manual and automated surveys. 
Historically, condition data was exclusively used for maintenance and rehabilitation (M&R) 
decisions. Lately, cracking information has been utilized in performance monitoring of 
different asphalt mixes and performance modeling to select proper mix design (Tapper et al. 
2013). As MAP-21 requires transportation agencies to report the amount of surface cracks 
annually, the need for more accurate and quicker data collection systems is imperative.  
 
Table 1. summarizes some of the testing and research for the robustness of LCMS crack 
detection. Note that the effectiveness of the digital technologies was not investigated further 
as they were proven to be less effective on chip seals, thus questioning their suitability for 
local roads with chip seals (Wix and Leschinski, 2012). 
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Table 1.3: Research into the robustness of LCMS crack identification and quantification 
Research Reference Research Background Conclusions from the Study 

Delaware Dept. of 
Transportation — 
Implementation 
and Calibration of 
LCMS for the 
DelDOT 

Gerber, A., 
Miller, T., 
and 
Richardson, 
M. (2018) 

• Determination of overall 
pavement condition (OPC) using 
LCMS detected pavement 
surface distresses 

• Identified and minimized 
differences between field-based 
distress measurements 
(windshield), LCMS-based 
distress measurements, and the 
resulting treatment 
recommendations originating 
from the DelDOT’s pavement 
management system 

• The researchers adopted 39 in. wheel path width in 
order to detect fatigue cracking 
• To rate block cracking, the LTPP requirement of 
minimum 50 ft. extent was also removed 
• It was reported that LCMS-based survey was not 
adequately recording raveling presented on flexible 
pavements, which significantly lowered the distress 
deduction in overall pavement condition calculation  
• They also revealed that LCMS imagery data 
processing follows a sequence, and once one distress 
is detected, it gets removed from the imagery and 
further processing continues. 
• It was mentioned that the distress detection order 
is transverse cracks first, followed by alligator 
cracking, and then block cracking. 

Univ. of 
Cambridge, UK — 
Automated 
Detection of 
Multiple Pavement 
Defects 

Radopoulou
, S. and 
Brilakis, I. 
(2016) 

• Development of low-cost 
method that automatically 
detects pavement distress such 
transverse and longitudinal 
cracks, patches, and potholes 

• Used the semantic texton 
forests (STFs) algorithm as a 
supervised classifier on a 
calibrated region of interests 

• The overall accuracy of the method is above 82%, 
with a precision of more than 91% for longitudinal 
cracks, more than 81% for transverse cracks, more 
than 88% for patches, and more than 76% for 
potholes 
• It developed a method for calculating the region of 
interest within a video frame considering pavement 
manual guidelines 

TRL, UK – Use of 
high-resolution 3D 
surface data to 
monitor change 
over time on 
pavement surfaces  

McRobbie et 
al. (2015)  

• The development of improved 
and accurate methods for 
aligning data from successive 
surveys 

• The use of high-resolution 3-D 
parameters for identifying the 
onset of surface disintegration 

• The application of GPS combined with longitudinal 
profile and the use of transverse profile improved 
the automated alignment of data across the 
surveyed lane 
• This research demonstrated that there is a strong 
potential for the use of change in profile 
(longitudinal and transverse) to detect the 
progression of surface disintegration 
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Research Reference Research Background Conclusions from the Study 
FHWA (USA) – Field 
evaluation of 
automated distress 
measuring 
equipment  

Serigos et 
al. (2014)  

• 20 pavement sections were 
selected for field testing  

• Pavement surface cracks, 
texture, roughness, and digital 
crack maps were collected 

• Four different automated survey 
vehicles collected pavement 
surface distresses, texture, and 
cross slopes at highway speeds: 
TxDOT, WayLink-OSU, Fugro-
Roadware, and Dynatest 

• Survey results of automated and 
manual assessment were 
compared and accuracy of 
transition from manual to 
automated survey was 
evaluated  

 

• No clear pattern was found in manual raters surveys 
• In both flexible and rigid pavement, TxDOT and 
WayLink-OSU (Oklahoma State University) appeared 
to miss cracks more than reporting false positives, 
whereas Dynatest and Fugro-Roadware offered maps 
with cases of both missed cracks and false positives. 
Therefore, TxDOT and WayLink-OSU system’s 
algorithms inclined to underestimate the crack 
lengths 
• Although WayLink-OSU outclassed the other vendors 
at detecting cracks on many flexible pavements, it 
inclined to overestimate the crack width 
• Manual correction provided significant improvement 
in Dynatest and Fugro-Roadware produced distress 
measurements 
• For texture, Dynatest and Fugro-Roadware showed 
similar results compared to the reference 
measurements taken by the research team using a 
circular texture meter (CTM), whereas WayLink-OSU 
and TxDOT’s estimated average reading were usually 
higher in magnitude; WayLink-OSU shadowed a 
similar trend in shape as the reference measurement 
• For cross slope, Dynatest measurements showed a 
similar trend to the reference in the graph-line 
shape and slope magnitude. Fugro-Roadware  and 
WayLink  sometimes followed the reference graph-
line shape, though they display variations above and 
below the reference slope magnitude 
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Research Reference Research Background Conclusions from the Study 
New Zealand – Did 
we get what we 
wanted? Getting 
rid of manual 
condition surveys  

Henning and 
Mia (2013)  

• The main objective of this 
research was to establish 
whether laser scanning crack 
detection methods could 
effectively identify cracking on 
chip seal surfaces. The further 
objective was to determine the 
effectiveness of crack detection 
on a larger scale compared with 
a visual rating that typically 
looked at either a 10% or 20% 
sample size.  

• There was a strong correlation between the LCMS 
and the LTPP cracking data  
• The comparison with Road Asset Maintenance 
Management (RAMM) network survey data suggested 
more than 60% of crack lengths were missed 
according to the 10% sampling length used for the 
RAMM surveys 
• It was recommended that authorities in New 
Zealand should give strong consideration of using the 
automated crack detection 

 

ARRB – Cracking – a 
tale of four 
systems  

Wix and 
Leschinski 
(2012)  

• Comparative performance 
among different automated 
crack measurement systems  

• Testing on asphalt and sprayed 
seals pavements 

• Both automated crack measurement systems 
showed excellent repeatability on asphalt pavement 
surfaces as well as the good similarity between their 
cracking intensity results. However, there was a 
distinguishable difference on sprayed seal surfaces. 
Although the repeatability of the LCMS on sprayed 
seal surfaces was promising, it overestimated the 
crack intensity and showed a very poor overall 
correlation with RoadCrack. 

Canada, 
Pavemetrics – 
Using 3D laser 
profiling sensors 
for the automated 
measurement of 
road surface 
conditions (ruts, 
macro-texture, 
raveling, cracks)  

Laurent et 
al. (2011)  

• General introduction to a 
specific LCMS is presented along 
with some robustness testing 
was undertaken in Québec 
(MTO), Canada  

• The LCMS system was tested at the network level 
(6,225 miles) to evaluate its performance at 
automatic detection and classification of cracks; The 
system was evaluated to be over 95% correct in the 
general classification of cracks 
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Detection of Patching and Raveling  
Serigos et al. (2014) concluded in FHWA Report 0-6663-2 that detection of patching and 
raveling can be improved with manual corrections. They observed that WayLink-OSU and 
Fugro-Roadware semi-automated distress survey reported fewer numbers and smaller patch 
sizes, while the Fugro-Roadware automated system and Dynatest’s automated and semi-
automated systems failed to report patching. 
 
Van Aalst et al. (2015) reported they developed a system that can identify asphalt pavement 
raveling from high-resolution 3D measurements of road surfaces by means of high-speed laser 
triangulation. This system is capable of determining the pavement type, the extent of 
raveling, and remaining service life on porous asphalt in the Netherlands. They have trained a 
quadratic classifier based on the eleven texture features on about 1,685 mile pavement 
sections.  
 
Sensor-Measured Data 
 
Automated methods were developed with the objective of performing more accurate, 
repetitive, and fast collection of transverse profiles. Automated rut measurement systems are 
usually grouped into four categories according to the technology applied: ultrasonic, point 
laser, scanning lasers, and optical camera and laser systems. Ultrasonic and point laser-based 
system generally collect 3 to approximately 30 data points and are, therefore, considered 
point-based systems. However, the last two systems are able to collect up to approximately 
4,160 data points per profile and are, therefore, considered continuous profile-based 
systems. 
 
Vendors such as Mandli Communications Inc., Dynatest, Fugro-Roadware, and Applus RTD use 
the LCMS system in order to collect pavement surface roughness, rutting, and faulting data. 
LCMS system collects up to 4,160 points per transverse profile at highways speeds. 
 
In automated pavement data collection systems, sensor-measured data are collected and 
processed almost in real-time and results comply with sensor data collection protocols set by 
the transportation agencies. Sensor data processing involves the analysis of longitudinal and 
transverse profiles. The parameters that come out of the sensor data analysis are the IRI, 
rutting of asphalt pavements, and joint faulting of jointed concrete pavements.  
 
2012 ODOT Pavement Condition Ratings Evaluation Project 
 
A previous study to investigate the current technology for automated and semi-automated 
collection and processing of pavement condition ratings (PCR) data was completed for ODOT 
in 2013 (Vavrik et al. 2013). The primary objective of that study was to determine if the 
systems and rating methods were a suitable replacement for ODOT’s manual data collection 
and processing methods. Primarily, this included identifying the quality of vendor-collected 
data and its consistency with ODOT PCR practices and results. An additional goal was to 
determine the relative benefits of each option—monetary, safety, speed, etc. Finally, should 
ODOT pursue transitioning to the automated image collection and automated, semi-
automated, or manual distress data identification from the images, this research was 
designed to provide recommendations for PCR data collection and processing that meets 
ODOT’s needs. 
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Pathway showed good ability to identify the existence of ODOT-rated distresses on AC 
pavements, but low success at matching ODOT’s severity and extent (42.2% distress/severity 
match and 23.3% DSE match). Pathway matched 94 percent of ODOT distresses. The best AC 
pavement distress correlations occurred with standard crack types (block, transverse, and 
longitudinal). Figure 1.5 illustrates Pathway’s abilities to match the DSEs noted by the ODOT 
raters. Numbers in parenthesis indicate the number of sites in which ODOT identified the 
distress. Table 1.4 quantifies and summarizes these AC pavement correlation ratings. 

 
Figure 1.5: Pathway DSE rating match with ODOT for AC pavements (Vavrik et.al. 2013). 
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Table 1.4: Summary of Pathway match with ODOT DSE ratings for AC pavements (Vavrik 
et.al. 2013). 

Distress Sites Distress/severity match, 
% 

DSE match, 
% 

Ravel 12 25 8 
Bleed 2 100 100 
Patch 10 30 30 
Debonding 4 25 25 
Rut 14 21 21 
Pothole 0 N/A N/A 
Wheeltrack 
cracks 

14 21 21 

Block/trans 
cracks 

13 62 31 

Long 
cracks 

13 54 15 

Edge 
cracks 

10 30 10 

Thermal 
cracks 

11 27 18 

Crack seal 
damage 

13 - 38 

Weighted Avg: 42.2 23.3 
 
Comparisons for AC/PCC overlay pavements reveal some reduction in Pathway’s ability to 
identify DSEs, compared to their ability to identify AC pavement DSEs. Pathway matched 
ODOT distress identification on 58 percent. Table 1.5 summarizes the Pathway’s correlations 
with ODOT ratings for AC/PCC test sites. Figure 1.6 provides summaries of the Pathway 
matches for DSE. 
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Table 1.5: Summary of Pathway matches with ODOT DSE ratings for AC/PCC pavements 
(Vavrik et.al. 2013). 

Distress Sites Distress/severity match, % DSE match, % 

Ravel 20 55 20 

Bleed 1 0 0 

Patch 19 37 21 

Debonding 9 11 0 

Rutting 19 16 5 

Pumping 6 0 0 

Pressure 7 0 0 

Corner Break 6 0 0 

Long Cracks 20 60 15 

T Cracks - unj 8 25 13 

T Cracks - joint 12 58 17 

T Cracks - int 12 8 0 

Crack Seal 20 n/a 30 

Punchout 5 0 0 

Shat Slab 1 0 0 

Weighted Avg:  26.7 9.1 
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Figure 1.6: Pathway DSE rating match with ODOT for AC/PCC pavements (Vavrik et.al. 

2013). 
 
Pathway was able to identify 69 percent of the PCC distresses noted by ODOT raters. 
Primarily, Pathway encountered difficulties matching ODOT surface deterioration, pumping, 
and pressure damage. Severity matches with ODOT raters were 33 percent. Figure 1.7 shows 
Pathway’s DSE rating match with ODOT for PCC pavements. Table 1. shows a summary of 
Pathway’s match with ODOT DSE ratings for PCC pavements. 
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Table 1.6: Summary of Pathway’s match with ODOT DSE ratings for PCC pavements 
(Vavrik et.al. 2013). 

Distress Sites Distress/severity match, % DSE match, % 
Surface 11 0 0 
Longitudinal spall 9 22 0 
Patch 11 64 36 
Fault 8 63 0 
Transverse spall 11 18 0 
Pumping 1 0 0 
Pressure 8 0 0 
Corner break 2 0 0 
Longitudinal cracks 6 50 17 
Tvs. cracks <20' 3 100 33 
Tvs. cracks >20' 8 50 25 
Weighted Avg:  33.3 10.3 

 

 
 

Figure 1.7: Pathway’s DSE rating match with ODOT for PCC pavements (Vavrik et.al. 
2013). 
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The ability of Pathway to repeatedly collect DSE information leading to the same PCR values 
was evaluated using repeat runs on sites representing each pavement type. Pathway was 
asked to collect a second set of distress videos and to evaluate them independently. As Table 
1. indicates, very little difference was noted between repeated vendor evaluations of all 
pavement types. 
 

Table 1.7: Variability of Pathway’s PCR results. 
Site PCR 1 PCR 2 Std. dev 

AC (site 20) 57.6 57.3 0.2 
AC/PCC (site 35) 71.0 71 0 
PCC (site 19) 77.0 77 0 

 
Figure 1.8 illustrates the ODOT and Pathway’s PCR ratings and trends for all sites, plotted by 
increasing PCR. Similar trends can be noted between Pathway’s and ODOT PCR values. 
 

 
 

Figure 1.8: Comparison of Pathway’s PCR with average ODOT PCR for all sites. 
 
The information gained in this research had contributed greatly to achieving the ODOT 
objective of determining if the state-of-the-practice systems and rating methods were a 
suitable replacement for ODOT’s current manual data collection method. This was primarily 
achieved through a detailed review of the quality and consistency of vendor-collected 
pavement distress, severity, and extent data. Additionally, factors associated with 
transitioning to semi-automated distress data collection and reporting, including productivity, 
cost, benefits, and risks, were identified and evaluated. Finally, the research team developed 
an understanding of differences in current vendor processes, capabilities, and plans. 
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Transition from Manual to Automated Data Collection Methods 
 
Vavrik et al. (2013) stated that currently over 35 agencies in the US collect network level 
pavement surface image and sensor data for semi-automated and manual surface distress 
data identification.  They conducted a survey of 18 state agencies to identify their pavement 
distress collection and processing methods, distresses identified, privatization criteria, and 
quality management process.  The results of the data collection methods survey is shown in 
Figure 1.9. As observed from the data, a majority of the state agencies in the survey utilized 
automated pavement data collection methods. 
 

 
Figure 1.9:  Agency data collection methods (adopted from Vavrik et al. 2013) 

 
Texas Department of Transportation (TxDOT) conducted a pilot study to collect network-wide 
automated pavement condition and distress data in Bryan and Houston districts (Serigos et al. 
2015).  Once the data were collected and converted to TxDOT PMIS ratings, the research 
team evaluated the differences between the results produced by the automated methods, 
and methods currently employed by TxDOT.  Results indicated the semi-automated visual 
distress ratings captured more distresses than collected with TxDOT visual ratings.  This pilot 
study is expected to provide TxDOT with valuable information on implementing automated or 
semi-automated visual distress surveys in place of the TxDOT PMIS manual survey to improve 
safety and provide more accurate measurements of visual distress data. 
 
Alabama Department of Transportation (ALDOT) conducted a research study to develop a 
methodology for updating the ALDOT pavement condition ratings using automated data 
collection (Timm and Turochy, 2014).  The two methods evaluated for this project included 
use of Artificial Neural Networks (ANN), and recalibrating the existing ALDOT PCR model 
through regression analysis using automated data collected in 2009 and 2010.  An independent 
validation of the revised model was conducted using automated and manual data collected 
from 10 quality control segments in 2011.  Results from the study indicated that ANN 
modeling proved unreliable, and is not recommended for PCR prediction.  Recalibration of the 
original model using regression analysis provided acceptable results, with 86% of the vendor 
computed condition ratings within 10 points of the ALDOT manual surveys.  
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Nebraska Department of Roads (NDOR) evaluated the use of automated data collection to 
calculate the pavement condition ratings, and its implementation into the Nebraska 
Pavement Management System (Rami and Kim, 2015).  No change to the existing decision 
making process was expected as part of this study.  A user friendly program was developed to 
convert the automated distress ratings to manual distress rating format, and data for over 
7,000 miles was compared to assess the correlation between manual and automated methods.  
Results indicated that the Nebraska Serviceability Rating (NSR) calculated from automated 
methods was within 10% of the manual ratings, and automated distresses were rated with 
higher sensitivity levels. 
 
The Ministry of Transportation Ontario (MTO) conducted a research study to develop and 
validate interim performance models using various combinations of manual and automated 
distress sets (Chan et al. 2016). The study uses data from 934 pavement sections surveyed 
using manual and automated methods.  Pavement condition using manual distress ratings, and 
automated data was available, while a new hybrid condition assessment methodology was 
developed in this study. The hybrid assessment incorporates distress types identified by LCMS, 
and manual data collection methods. The results of this study were expected to facilitate the 
Ministry’s transition from a manual to an automated pavement management system by 2017.   
 
A research study conducted by North Carolina Department of Transportation (NCDOT) focused 
on developing new performance models for the automated pavement distress data, and 
update of the NCDOT pavement management system (Hildreth and Nicholas, 2016). 
Performance models for asphalt and concrete pavements were developed using automated 
data collected from three years (2013, 2014 and 2015).  The study evaluated the impact of 
the new performance models on the trigger points and benefit weight factors by studying a 
composite performance index developed using Analytical Hierarchy Process (AHP), and 
determine benefit weight factors through performing Cost-Benefit Analysis (CBA) and 
sensitivity analyses. 
 
Gerber et al. (2018) conducted a study for the Delaware Department of Transportation 
(DelDOT) to perform distress calibrations to transition from manual to LCMS-based pavement 
condition assessment.  The study involved comparing the manual and LCMS based distress 
surveys from 30 test sites, and adjusting data processes to improve M&R treatment selection 
and index calculations in the PMS.  Though the process did not result in complete agreement 
between manual and LCMS based surveys, the project was successful in minimizing the gaps 
between automated and manual surveys for the test sites. 
 
Researchers from International Cybernetics Co. (2020) developed the Pavement Surface 
Cracking Metric (PSCM) and converted this metric into a Pavement Surface Cracking Index 
(PSCI).  The PSCM is calculated based on the amount of cracking detected on the surface area 
and utilizes the actual crack width and length.  The PSCM was converted into an index from a 
0-100 scale by plotting the PSCM and the Pavement Condition Index and deriving the best fit 
exponential function.  Data collected on multiple runs on three asphalt sections showed good 
repeatability of the PSCM metric.  The index values calculated from the PSCM were found to 
be repeatable with low standard deviation and coefficient of variation. 
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Summary 
 
Although the automated collection and processing of pavement distress data have progressed 
greatly in the last decade, there still are barriers to overcome before the technologies 
involved can come to completion as real-time, reliable, and generally applicable tools. First is 
the need for the development of systems capable of consistently producing high-quality 
digital images under most data collection conditions (lighting, the angle of the sun, 
shadowing, etc.). Although there is evidence that the technologies have progressed to the 
needed capability, they are not generally applied within the industry. Once good images are 
consistently produced, greater progress can be made in the second major problem area: that 
of improving the quality of data automatically reduced from those images and the speed with 
which data can be acquired. Again, there is strong evidence that the necessary technologies 
exist, but they seem to need further maturing to address both quality and speed. There may 
be a need for a focused effort to bring about that maturity. 
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Appendix 2: Data Quality Control 
 
Overview 
 
The segments rated by Pathview relative to the pavement segments rated through ODOT’s PCR 
method were compared for data collected from District 1 in 2016. Pathview data are collected 
by ODOT’s Office of Technical Services, and segments are generally delineated by major points 
of interest on the pavement network (e.g. county line, intersections with state routes). In 
comparing Pathview segments as they are collected and without any post-processing, Pathview 
segments tend to be longer than PCR segments. Therefore, generally there are fewer Pathview 
segments than PCR segments on a route. Shown in Table 2.1 are the individual segments rated 
by Pathview and PCR in 2016 for State Route 81 in Allen (ALL) County, where begin and end log 
points are listed as the county true log. The length and begin/end points of the segments rated 
via Pathview were not always consistent with the segments rated via PCR. For example, the 
second segment collected by Pathview in the up direction on ALL-81 is 12.4 miles long and 
encompasses 6 flexible PCR segments and 3 composite PCR segments. Pathview segment lengths 
can be edited after collection. The difference in segment lengths is attributed to the manner 
in which data are collected. Currently data are collected for HPMS reporting of surface distress, 
IRI and rutting, and reported based on surface type (asphalt or concrete). Pathview enables 
HPMS reporting in 1/10th mile segments by post-processing the data. According to ODOT’s Office 
of Technical Services, post-processing of the data could be performed to aggregate data for 
PCR segments, although, it would require quite a bit of effort initially. ODOT should consider 
developing the files necessary for Pathview to report data by PCR segments.  
 
Additionally, the segments rated by Pathview may not be in the same direction as the segment 
rated by PCR. As shown in Table 2.1, 3 segments in the up direction and 6 in the down direction 
were rated by Pathview, while 18 segments in the up direction and no segments in the down 
direction were rated on the same route by PCR in 2016. 
 
 

Table 2.1: Example of Difference in Segments Rated by Pathview and PCR in 2016 
County-
Route 

Direction PCR Pathview 
Begin End Pavement 

Type 
Begin End 

ALL-81 Up 0 3.07 FLEXIBLE 0 3.066 
3.31 9.27 FLEXIBLE 3.306 15.718 
9.27 11.35 FLEXIBLE 15.718 16.65 
11.35 13.47 FLEXIBLE   
13.47 14.25 FLEXIBLE   
14.25 14.47 FLEXIBLE   
14.47 14.59 COMPOSITE   
14.59 15.54 COMPOSITE   
15.54 15.72 COMPOSITE   
15.72 16.13 FLEXIBLE   
16.13 16.65 COMPOSITE   
16.85 17.01 COMPOSITE   
17.01 17.53 COMPOSITE   
17.53 18.15 COMPOSITE   
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County-
Route 

Direction PCR Pathview 
Begin End Pavement 

Type 
Begin End 

18.15 18.47 FLEXIBLE   
18.47 19.08 JOINTED 

CONCRETE 
  

19.08 19.67 FLEXIBLE   
19.67 29.4 FLEXIBLE   

Down    13.465 15.718 
   15.718 16.65 
   16.842 18.47 
   18.47 18.873 
   18.873 19.08 
   19.08 29.404 

 
 
ODOT Office of Technical Services indicated the pavement type is entered prior to data 
collection and is based on ODOT’s roadway inventory. The pavement types for which PCR 
segments were rated on ALL-81 in 2016 are listed in Table 2.1. The Pathview software lists 
pavement type twice, once for the segment and then also when a distress is identified. 
However, these pavement types may not match each other. For instance, the segment, ALL-81 
16.842 – 18.47 which was rated by Pathview, has a pavement type of “A” for asphalt listed in 
the road condition information system. However, an “O,” presumably for overlay indicating a 
composite pavement, is listed in the distress features database for each distress identified 
between log points 16.881 and 18.139. As shown in Table 2.1, the pavement type for the up 
direction between 16.85 and 18.15 was reported for PCR as composite. Pathview data on this 
segment were not collected in the up direction, only in the down direction. The straight-line 
diagram for this segment, shown in Figure 2.1, shows a composite pavement between 17.102 
and 18.133. This indicates the pavement type, “P” listed in the Pathview software in the 
distress features database where a distress is identified, appears to be more in-line with the 
road inventory.  
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Figure 2.1: Straight-line Diagram of ALL-81 17.00-18.00 (Surface type “G” = Bituminous 

Concrete; Base type “L” = Bituminous Concrete or Penetration Macadam, type “N” = 
Plain Concrete)  

 
The review of available data indicated the pavement type listed in Pathview for each distress 
was not always reflective of the inventory. As an example, District 6 PCR data from 2015 show 
log points 0.00 to 3.16 were rated in both directions on I-71 in Pickaway County as composite 
pavement and ODOT straight-line diagrams confirm this pavement type. However, in the 
Pathview data, the same segment on I-71 in both directions was listed as an asphalt pavement 
(listed as “A”). It is unclear whether this error is related to the entry of the pavement type 
prior to collection, the roadway inventory, or the Pathview software. However, as noted below, 
differentiating between asphalt and composite pavements is important to ensure the 
appropriate distresses are rated. Prior to collecting data, the road inventory file should be 
reviewed to ensure the pavement type entered prior to the data collection process is accurate.  
 
The pavement type is important as it dictates the distresses rated. Misidentifying the pavement 
type presents issues when comparing Pathview distresses to PCR distresses. For the PCR 
method, distresses rated for each pavement type are listed in Table 2.2.  
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Table 2.2 Lists of Distresses Rated by Pavement Type for PCR Method (after ODOT, 
2006) 

Distresses Rated 
Flexible Composite Jointed Concrete 
Raveling Raveling Surface Deterioration 
Bleeding Bleeding Longitudinal Joint Spalling 
Patching Patching Patching 

Debonding Surface Disintegration/ 
Debonding 

Pumping 

Crack Sealing 
Deficiency 

Rutting Faulting (Joints and Cracks) 

Rutting Pumping Settlements 
Settlements Shattered Slab (Jointed Base) Transverse Joint Spalling 

Potholes Settlements Transverse Cracking (Plain 
Concrete) 

Wheel Track Cracking Transverse Cracks (Unjointed 
Base) 

Pressure Damage 

Block and Transverse 
Cracking 

Joint Reflection Cracks (Jointed 
Base) 

Transverse Cracking 
(Reinforced Concrete) 

Longitudinal Cracking Intermediate Transverse Cracks 
(Jointed Base) 

Longitudinal Cracking 

Edge Cracking Longitudinal Cracking Corner Breaks 
Thermal Cracking Pressure Damage/ Upheaval  

 Crack Seal Deficiency  
 Corner Breaks (Jointed Base)  
 Punchouts (Unjointed Base)  

 
Pathview is not capable of identifying all the composite pavement distresses listed for the PCR 
method. As shown in Table 2.2, the biggest differences in the PCR method between asphalt and 
composite pavements are as follows: 

• Potholes, wheel tracking cracking, block and transverse cracking, thermal cracking and 
edge cracking are rated on asphalt pavements only. 

• Transverse cracks and joint reflection cracks on composite pavements are categorized 
based on the presence of joints in the underlying concrete. 

• Composite pavements include additional distresses: pumping, shattered slab, pressure 
damage/upheaval, corner breaks (jointed base), and punchouts (unjointed base). 

 
Because the base type (jointed or unjointed concrete) on a composite pavement is not included 
in the Pathview software, transverse cracks are not defined in the same manner as the PCR 
method. Furthermore, Pathview cannot identify settlements, crack seal deficiency, pumping, 
pressure damage/upheaval, corner breaks or punchouts. Therefore, when a composite 
pavement is misidentified as an asphalt pavement, some of the differences between distresses 
on asphalt and composite pavements are not of concern. However, Pathview may assign 
distresses specific to asphalt pavements including potholes, edge cracking and wheel track 
cracking to composite pavements. This was the case for I-71 in Pickaway County, of the 4,241 
distresses identified in both directions, 439 were wheel track cracking, 1,228 were edge 
cracking, and 39 were potholes. Thus, 40% of all identified distresses on this composite segment 
were rated by Pathview as distresses specific to asphalt pavements in the PCR method. 
Additionally, 1,239 instances of transverse cracking (29% of all distresses on this segment in 
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both directions) were identified by Pathview, which may not depict transverse cracking on a 
composite pavement, as defined by the PCR method. While this does not appear to be the case 
for this segment of road, as ratings from the PCR method do not show any shattered slab, 
misidentifying a composite pavement as an asphalt pavement would prevent shattered slab 
distresses from being identified in Pathview.  
 
The types of distresses assigned by Pathview for each pavement type were further evaluated. 
The distresses identified by the Pathview software and current Autoclass and Autocrack (Ohio 
_Updated_011919.C11) algorithms were evaluated for District 1 data collected in 2016. First, 
the distresses were summarized for each pavement type, and are listed in Tables 2.3 – 2.5. The 
pavement types listed below are defined by Pathview. For the 2016 data provided to the 
research team, a total of 525,144 distresses were identified in District 1. It should be noted one 
set, 485, was not provided to the research team, although Pathview indicated some District 1 
data were stored in set 485. Although rutting and IRI are not listed in the tables, they were 
identified by the software. However, they were excluded from the quality control check of the 
software, as they are not easily identifiable from forward facing and downward facing images.  
 

Table 2.3 Distresses Identified on Asphalt Pavements, District 1, 2016 Data 
Asphalt Distresses No. % of Total % of Total (Excluding 

Unassigned) 
Edge Cracking 25,007 5.59% 5.86% 
Longitudinal 
Cracking 

115,603 25.85% 27.10% 

Patching 13,569 3.03% 3.18% 
Pot Holes 0 0.0% 0.00% 
Raveling 458 0.10% 0.11% 
Transverse Cracking 204,367 45.71% 47.90% 
Wheel Track 
Cracking 

67,654 15.13% 15.86% 

Unassigned 20,467 4.58% 
 

Total 447,125 100.00% 100.00% 
 

Table 2.4 Distresses Identified on Composite Pavements, District 1, 2016 Data 
Composite 
Distresses 

No. % of Total % of Total (Excluding 
Unassigned) 

Longitudinal 
Cracking 

10,665 22.88% 24.60% 

Patching 1,696 3.64% 3.91% 
Raveling 61 0.13% 0.14% 
Transverse Cracking 22,542 48.35% 52.00% 
Slab 499 1.07% 1.15% 
Wheel Track 
Cracking 

7,884 16.91% 18.19% 

Unassigned 3,271 7.02%  
Total 46,618 100.00% 100.00% 
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Table 2.5 Distresses Identified on Jointed Concrete Pavements, District 1, 2016 Data 
JCP Distresses No. % of Total % of Total (Excluding Joint) 
Longitudinal 
Cracking 

301 0.96% 6.67% 

Longitudinal Spalling 557 1.78% 12.34% 
Patching 45 0.14% 1.00% 
Transverse Cracking 1,165 3.71% 25.82% 
Transverse Spalling 1,118 3.56% 24.78% 
Edge Cracking 278 0.89% 6.16% 
Joint 26,856 85.62%  
Slab 907 2.89% 20.10% 
Wheel Track 
Cracking 

141 0.45% 3.13% 

Total 31,368 100.00% 100.00% 
 
 
In reviewing the distresses identified by Pathview in District 1, Pathview found approximately 
25,000 occurrences of edge cracking on asphalt pavements. While edge cracking is a distress 
for asphalt pavements in the PCR method, it is only rated if the asphalt pavement is not 
bordered by a shoulder or curb. During a field visit to District 6 (PIC-22 18.42 – 18.58) as part 
of this study, it was confirmed edge cracking was identified by Pathview software on a 
pavement which is bordered by a curb. As noted previously, Pathview software identified edge 
cracking on PIC-71 0.00 – 3.16, the interstate where a composite pavement was mistakenly 
identified as an asphalt pavement. Regardless of the misclassification of pavement type, PIC-
71 0.00 – 3.16 is an interstate segment with a paved shoulder and therefore should not have 
been rated for edge cracking. Along with interstate routes, four-lane divided routes also have 
paved shoulders and should not have edge cracking rated according to the PCR manual. 
Conducting either pre- or post-processing of the data should be considered to exclude edge 
cracking on pavements with curb or paved shoulders. 
 
Additionally, a substantial number of distresses were identified on asphalt pavements that were 
unassigned (4.6%), meaning an anomaly on the pavement surface was identified by Pathview, 
but not assigned a distress or severity.  
 
As noted previously, Pathview is not able to identify the underlying concrete as jointed or 
unjointed, as a result transverse cracking as defined by Pathview differs from the various 
transverse cracks in the PCR method (transverse cracks unjointed base, joint reflection 
cracks, and intermediate transverse cracks). Overall, transverse cracking makes up a 
significant portion (approximately 50%) of all distresses identified by Pathview on composite 
pavements in District 1 in 2016. Approximately 7% of the total distresses identified were 
unassigned.  
 
Edge cracking, as well as slab (shattered slab) and wheel track cracking were identified on 
jointed concrete pavements, as listed in Table 2.5. However, all three distresses are not rated 
on jointed concrete pavements by the PCR method. Edge and wheel track cracking are specific 
to asphalt pavements and shattered slab is specific to composite pavement. Another distress, 
“joint” was also identified on jointed concrete pavements. However, it is understood this 
distress is simply the identification of the presence of a joint, which explains the large 
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percentage (85%) of this distress relative to all distresses identified on concrete pavements in 
District 1 in 2016. Therefore, percentages of each distress are also shown when “joint” is 
excluded from the count. When “joint” is excluded, distresses which are not specific to 
concrete pavements (edge cracking, shattered slab, and wheel track cracking) make up more 
than a quarter (29.4%) of all distresses on concrete pavements in District 1 in 2016. 
 
Of those distresses identified by Pathview for District 1 in 2016 data, 23,738 were not 
assigned a distress type or severity. These distresses were further evaluated. As discussed in 
the next section, unassigned distresses were evaluated to determine if any trends or patterns 
were observed. Unassigned distresses were also reviewed to check the assigned location, 
quality of the image, and the assigned distress matches the pavement type. Additionally, 
instances were observed in which the location for a distress was not provided. The source for 
the error could not be determined. The research team attempted to locate them however, 
they could not be found in the software. Overall, the number of occurrences were low 
compared to the total number of distresses on each pavement type. 
 
Quality Control Check of Images 
 
Due to the large number of unassigned distresses identified in District 1, 2016 data, all images 
could not be reviewed. Rather, approximately 1% of the unassigned distresses were randomly 
selected for further review. Data are stored by set which are generally collected by segment. 
To ensure a range of routes and locations within District 1, distresses to be reviewed were 
selected based on set. Approximately 1% of the unassigned distresses in each set were 
randomly selected for review. The number of unassigned distresses reviewed from each set 
are listed in Table 2.6. In the course of reviewing the selected unassigned distresses, any 
additional observations of note were also recorded.  
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Table 2.6 Number of Unassigned Distresses Reviewed by Set Number, District 1, 2016 
Data 

Set 1% of each set 
486 5 
487 32 
488 1 
489 5 
490 22 
491 1 
492 4 
493 3 
494 2 
495 7 
496 17 
497 29 
498 3 
499 4 
500 37 
501 19 
502 12 
503 5 
504 9 
505 9 
506 6 
507 8 

Total 240 
 
A quality control (QC) check of the images was performed by viewing the forward facing and 
downward facing images relative to the distresses identified by the software. The goal of the 
QC check was to note any issues with the software related to distress location, image quality, 
and to determine if any patterns were observed for the unassigned distresses. 
 
As part of the QC check, the GPS location of the identified distress was entered into Google 
Maps to confirm the location was on the same roadway and portion of the segment as was listed 
by the software. A visual confirmation was also conducted by comparing Google Maps street 
view with the forward facing image. There were a few instances in which the GPS coordinates 
in the software were slightly offset from the pavement in Google Maps. On segment WYA-30-
18-24.561, Pathview identified a “SlabLow” (shattered slab of low severity) distress at image 
starting at 1:07:11:16. The starting latitude and longitude however are for an entirely different 
pavement segment on DEF-18, although the end latitude and longitude coordinates are 
correctly assigned for the pavement segment. It should be noted the pavement segment is 
concrete and should not be rated for shattered slab following ODOT PCR method. Aside from 
these observations, no other issues regarding the location of the unassigned distress or 
pavement segment were observed.  
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The quality of the downward facing images were also noted. The image quality of the downward 
facing images were rated as good, fair, or poor. Overall, images were good with occasional fair 
quality reported. Very few images of poor quality were noted. An example of a very poor image 
quality is shown in Figure 2.2 for a small portion collected on segment HAR-68-0.000-9.245. 
Each downward image shown below captures 26.4 feet of pavement length at one lane wide. 
The image on the left is the pavement surface intensity, while the image on the right is the 3D 
elevation. These images were not one of the 240 unassigned distresses. The reason for such low 
quality could not be determined from the images shown in the Pathview software. 
 

 
Figure 2.2 Example of Very Poor Image Quality 

 
 
 
An unassigned distress is where the Pathview software has detected an anomaly on the 
pavement surface but cannot identify it as one of the defined distresses. In Pathview, an 
unassigned distress is highlighted by a lavender box on the downward facing images, which can 
be difficult to see, therefore in the example in the figure below it is shown with a yellow circle 
for both the intensity and 3D elevation images.  
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Figure 2.3 Example of an unassigned distress in Pathview, intensity, left and 3D 

elevation, right 
 
In reviewing the unassigned distresses several observations were made. First, several instances 
were found in which replicates of an individual distresses were identified. An example of this 
is shown in Figure 2.4 in which one instance of transverse cracking is identified multiple times 
resulting in 2 or 3 boxes highlighting the same distress. Duplicate or triplicate assignments of a 
distress are not specific to any one distress. However, there are at least 6 boxes for unassigned 
distresses in the image shown, and none of them are replicates of the same distress. Several 
occurrences of replicate distresses were reviewed, although the source of the error could not 
be identified.   
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Figure 2.4 HAR-30-12.000 – 2.949, Image 00:49:55:21 

In Figure 2.4, patching was identified in two locations on the image. However, the areas 
identified do not appear to show patching, nor does the forward facing image at this location; 
rather, the images show crack sealing. Pathview appears to have difficulty with crack sealing. 
Crack sealing deficiency is not rated by the Pathview software, however, crack sealing may 
erroneously be rated in the software as the crack type (transverse, longitudinal, or edge 
cracking), patching when closely spaced, or unassigned. Many of the unassigned distresses 
that were reviewed were crack sealing. Interestingly, it appears the software picks up only a 
portion of the crack seal in these cases. In particular over band crack sealing that deviates 
from a straight path or has sharp (nearly 90 degrees) spurs from a straight path or where the 
seal is in a curved path tended to trigger the unassigned distresses. Further examples of this 
are provided in the following figure in which two unassigned distresses (yellow circles) are 
identified that are curved paths of over band crack sealing. Additionally, Figure 2.5 shows a 
cluster of crack sealing mistakenly identified as a patch.  
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Figure 2.5 Examples of crack sealing as unassigned distresses and patching, HAN-30 

12.000-2.949, Image 00:52:28:11 
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While in many cases it is evident the unassigned distress is due to crack sealing, there were 
occurrences observed in which the area of the unassigned distress included the entire lane 
width in the image. An example of this is shown in Figure 2.6 where the box for the 
unassigned distress is the entire lane width and is shown as a red dashed line. The forward 
facing image, also shown in the figure below, shows a wet pavement surface. This may have 
contributed to the poor image quality and the triggering of the unassigned distress. While this 
image shows the pavement surface is wet, other instances were observed in which unassigned 
distress boxes encompass the entire lane width and the surface did not appear wet. 
 
There were also many occurrences in which the unassigned distress box could not be located 
within the image, this may be due to the color of the box which is difficult to see, or the box 
may be the entire width and not easy to see, or it simply does not exist.  
 
Other observations that were noted are listed below: 

• Pavement markings may be identified as unassigned distress, or mistakenly as a type 
of crack. 

• Railroad tracks, expansion joints and end dams on bridges may trigger an unassigned 
distress.  
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Figure 2.6 Example of wet pavement surface and entire lane width identified as 

unassigned distress 
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Appendix 3: Field Validation 
 
As discussed previously, a model was developed to project the 2021 PCS and decisions from the 2015 PCS data. In the same 
manner, decisions were generated for projected PCR data. Sections with a “do nothing” decision for both PCS and PCR were 
deleted from the data. The remaining sections are shown in Table 3.1.  

Table 3.1 List of potential field visit sites 
County Route Direction Begin End Length Priority 

System 
Pavement 

Type 
2021 PCR 

(Projected) 
StrD PCR Activity 2021 PCS 

(Projected) 
StrD PCS Activity 

FRA 40 UP 15.99 16.84 0.85 Primary COMPOSITE 63 16 60 69 25 60 

MAH 7 UP 3.58 8.72 5.14 General COMPOSITE 59 16 60 70 24 60 

MAH 7 UP 8.72 11.26 2.54 General COMPOSITE 59 19 60 70 24 60 

FRA 317 DOWN 12.02 12.12 0.10 General COMPOSITE 60 6 60 66 28 60 

GRE 444 UP 6.56 7.91 1.35 Primary COMPOSITE 63 8 60 72 23 60 

HIG 134 UP 12.28 13.99 1.71 General FLEXIBLE 63 18 60 71 23 60 

MOE 260 UP 4.33 5.52 1.19 General FLEXIBLE 35 27 60 72 23 60 

CLA 54 UP 4.88 6.01 1.13 General FLEXIBLE 58 14 60 66 28 60 

LOG 235 UP 1.17 2.24 1.07 General FLEXIBLE 57 16 60 70 25 60 

LOG 235 UP 5.41 6.19 0.78 General FLEXIBLE 55 19 60 70 25 60 

HOC 664 UP 15.20 15.90 0.70 General FLEXIBLE 53 17 60 68 26 60 

CLI 729 UP 12.16 12.72 0.56 General FLEXIBLE 60 14 60 67 27 60 

CLI 729 UP 13.06 13.53 0.47 General FLEXIBLE 63 14 60 67 27 60 

FAI 674 UP 0.00 0.40 0.40 General FLEXIBLE 57 20 60 69 25 60 

HOC 180 UP 0.05 0.39 0.34 General FLEXIBLE 61 11 60 70 24 60 

MAH 625 UP 0.00 0.22 0.22 General FLEXIBLE 63 13 60 69 25 60 

KNO 308 UP 0.00 0.20 0.20 General FLEXIBLE 47 21 60 71 23 60 

MAR 309 UP 0.00 15.35 15.35 General FLEXIBLE 49 24 60 67 27 60 

FAI 204 UP 0.40 5.92 5.52 General FLEXIBLE 62 19 60 65 29 60 

HOC 678 UP 0.00 4.00 4.00 General FLEXIBLE 47 23 60 66 28 60 

HOC 56 UP 0.53 4.37 3.84 General FLEXIBLE 58 17 60 69 26 60 

HOC 328 UP 1.75 4.35 2.60 General FLEXIBLE 52 20 60 66 28 60 
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County Route Direction Begin End Length Priority 
System 

Pavement 
Type 

2021 PCR 
(Projected) 

StrD PCR Activity 2021 PCS 
(Projected) 

StrD PCS Activity 

CLI 133 UP 3.55 5.86 2.31 General FLEXIBLE 55 20 60 68 26 60 

HOC 328 UP 4.35 6.30 1.95 General FLEXIBLE 48 21 60 66 28 60 

HAM 264 UP 0.05 0.45 0.40 General FLEXIBLE 71 14 30, 31, 38,or 
50 

65 29 60 

FRA 317 DOWN 16.96 17.30 0.34 General FLEXIBLE 59 15 60 69 25 60 

CLI 73 UP 0.00 6.24 6.24 Primary FLEXIBLE 59 19 60 68 26 60 

PIC 674 UP 1.22 10.93 9.71 General FLEXIBLE 61 17 60 67 27 60 

FAI 256 UP 5.99 12.13 6.14 General FLEXIBLE 46 23 60 65 29 60 

MOE 537 UP 0.00 4.98 4.98 General FLEXIBLE 47 22 60 71 23 60 

UNI 37 UP 6.95 9.14 2.19 General FLEXIBLE 58 22 60 68 26 60 

PIC 56 UP 19.57 20.66 1.09 General FLEXIBLE 58 19 60 67 27 60 

FAY 62 UP 13.65 14.60 0.95 General FLEXIBLE 69 13 38 or 50 65 29 60 

FAY 753 DOWN 10.44 11.05 0.61 General FLEXIBLE 54 11 60 66 28 60 

KNO 3 UP 32.55 33.03 0.48 General FLEXIBLE 46 25 60 68 26 60 

KNO 3 UP 27.71 28.12 0.41 General FLEXIBLE 51 19 60 66 28 60 

FRA 317 UP 18.54 18.89 0.35 General FLEXIBLE 84 10 0 65 28 60 

LIC 13 UP 9.31 9.59 0.28 General FLEXIBLE 50 15 60 70 24 60 

PIC 22 UP 18.42 18.58 0.16 General FLEXIBLE 72 10 38 or 50 65 29 60 

KNO 229 UP 15.08 19.27 4.19 General FLEXIBLE 54 26 60 72 23 60 

WYA 30 UP 17.50 24.56 7.06 Primary JOINTED 
CONCRETE 

79 14 40 74 21 70, 77, 90, 
100, or 110 

MAH 76 DOWN 6.95 8.65 1.70 Primary JOINTED 
CONCRETE 

78 11 40 74 21 70, 77, 90, 
100, or 110 

MAH 711 UP 0.37 2.05 1.68 Primary JOINTED 
CONCRETE 

84 10 40 71 24 70, 77, 90, 
100, or 110 

HAM 275 UP 36.58 37.51 0.93 Primary JOINTED 
CONCRETE 

86 9 40 74 21 70, 77, 90, 
100, or 110 

GRE 35 DOWN 0.00 1.12 1.12 Primary JOINTED 
CONCRETE 

70 24 60 71 24 70, 77, 90, 
100, or 110 

MAH 422 DOWN 2.31 3.29 0.98 Primary JOINTED 
CONCRETE 

61 9 60 71 24 70, 77, 90, 
100, or 110 

GRE 444 UP 7.91 8.16 0.25 Primary JOINTED 
CONCRETE 

88 1 0 72 23 70, 77, 90, 
100, or 110 
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Activity 60, overlay with repair, was the activity selected for a large majority of the projects. 
A significantly different activity for PCR and PCS was selected for 11 of the 47 sections. After 
considering section length, location, and travel time, the research team limited the site visit 
to six locations, shown in Table 3.1 in bold, italic font. Site visits were conducted over two 
days; September 30 and October 1, 2021. The results of the field trip are summarized below: 
 
FAY-62-13.65. This flexible section is a curbed, 5 lane undivided road with two lanes in each 
direction and a turn lane in the middle located in the city of Washington Court House. The 
projected PCR was 69 with a structural deduct of 13. The projected PCS was 65 with a 
structural deduct of 29. Projected distresses are shown in Table 3.2. 
 

Table 3.2 FAY-62-13.65 Distresses 
Distress PCR PCS 

Raveling HO HO 
Patching MO  
Debonding LO  
Crack Sealing Deficiency E  

Rutting MF LE 
Wheel Track Cracking MO HO 
Block & Transverse 
Cracking HO  

Longitudinal Cracking HO MO 
Edge Cracking  HO 
Thermal Cracking  ME 

 
 
Figure 3.1 is a typical view of the pavement. The wheel track cracking rated from the 
Pathview images is likely the block cracking. The inner lane was more distressed than the 
outer lane, with a longitudinal cracking, and accordance with ODOT procedures, likely the 
inner lane was rated by the PCR raters whereas the outer lane was rated by the Pathview. 
Thermal cracking was not observed on the section and the rutting and base failure typically 
associated with high severity wheel track cracking was not observed. 
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Figure 3.1 Typical Distresses on FAY-62-13.65 

 
As shown in Table 3.1, the recommended activity based on PCR was activity 38, a fine graded 
polymer asphalt overlay or activity 50, asphalt overlay without repair. The recommended 
activity based on PCS was activity 60, asphalt overlay with repair. The OU research team did 
not observe areas needing structural repair. 
 
FRA-317-18.54. This flexible section is a curbed, 5 lane undivided road with two lanes in each 
direction and a turn lane in the middle located in the city of Gahanna. The projected PCR was 
84 with a structural deduct of 10. The projected PCS was 65 with a structural deduct of 28. 
Projected distresses are shown in Table 3.3. 
 

Table 3.3 FRA-317-18.54 Distresses 
Distress PCR PCS 

Rutting MO ME 
Wheel Track Cracking LO MO 
Block & Transverse 
Cracking LF  

Longitudinal Cracking HO MO 
Edge Cracking  HO 
Thermal Cracking MO ME 

 
 
Figure 3.2 is a typical view of the pavement. Cracks were sealed.  Debonding and patching 
were observed at the manhole locations. Thermal cracking were also observed however, the 
rutting and base failure typically associated with high severity wheel track cracking was not 
observed. 
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Figure 3.2 Typical Distresses on FRA-317-18.54 
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As shown in Table 3.1, the recommended activity based on PCR was activity 0, do nothing. 
The recommended activity based on PCS was activity 60, asphalt overlay with repair. The 
research team did not observe any areas needing structural repair. 
 
PIC-22-18.42. This section is a 38’ wide roadway with one lane in each direction and a turn 
lane in the middle located in the city of Circleville. The ODOT straight line diagram for this 
section indicates 28’ of the width is flexible pavement and 10’ of the width is composite. The 
section was rated as a flexible pavement. The projected PCR was 72 with a structural deduct 
of 10. The projected PCS was 65 with a structural deduct of 29. Projected distresses are 
shown in Table 3.4. 
 

Table 3.4 PIC-22-18.42 Distresses 
Distress PCR PCS 

Raveling HO HO 
Crack Sealing Deficiency F  

Rutting LE LE 
Wheel Track Cracking LO MF 
Block & Transverse 
Cracking LF  

Longitudinal Cracking HF MO 
Edge Cracking  HO 
Thermal Cracking ME ME 

 
 
Figure 3.3 is a typical view of the pavement. There was fairly good agreement between the 
PCR and PCS ratings. The medium severity wheel track cracking rated by the PCS is likely 
what appears to be a widening crack in Figure 3.3 
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Figure 3.3 Typical Distresses on PIC-22-18.42 
 
As shown in Table 3.1, the recommended activity based on PCR was activity 38, a fine graded 
polymer asphalt overlay or activity 50, asphalt overlay without repair. The recommended 
activity based on PCS was activity 60, asphalt overlay with repair. The OU research team did 
not observe areas needing structural repair. 
 
GRE-35-0.00. This jointed reinforced concrete section is the westbound two lanes of a divided 
four lane limited access freeway east of Dayton Ohio. The projected PCR was 70 with a 
structural deduct of 24. The projected PCS was 71 with a structural deduct of 24. Projected 
distresses are shown in Table 3.5. 
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Table 3.5 GRE-35-0.00 Distresses 

Distress PCR PCS 

Longitudinal Joint Spalling MO MO 
Patching HO  

Faulting HO LE 
Transverse Joint Spalling LO HO 
Transverse Cracking (Plain Concrete)  HE 
Pressure Damage O  

Transverse Cracking (Reinforced Concrete) ME  

Longitudinal Cracking  ME 
Corner Breaks LO  

 
 
The typical slab on this section had one or two failed transverse cracks as shown in Figure 
3.4. The section also had cracking at the joint, shown in Figure 3.5, which is typical of the 
bottom up deterioration commonly called “tenting”. Longitudinal cracking was observed but 
extensive extent was not. 
 
 

 
Figure 3.4 Typical Failed Transverse Crack on GRE-35-0.00 
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Figure 3.5 Failing Joint on GRE-35-0.00 

 
 
As shown in Table 3.1, the recommended activity based on PCR was activity 60, asphalt 
overlay with repair. The recommended activity based on PCS was activity 70, crack and seat;  
activity 77 rubblize and roll; activity 90, unbonded overlay; activity 100, new flexible 
pavement; or activity 111, new rigid pavement. Based on the number of failed transverse 
cracks and failing joints, a major rehabilitation may be more economical than the repair and 
overlay activity. 
 
HAM-275-36.58. This jointed reinforced concrete section is the southbound lanes of a divided 
six lane interstate on the east portion of the Cincinnati outerbelt. The projected PCR was 86 
with a structural deduct of 9. The projected PCS was 74 with a structural deduct of 21. 
Projected distresses are shown in Table 3.6. 
 

Table 3.6 HAM-275-36.58 Distresses 
Distress PCR PCS 

Longitudinal Joint Spalling LO LO 
Patching LO  

Faulting LO MO 
Transverse Joint Spalling LO HO 
Transverse Cracking (Plain Concrete)  HE 
Transverse Cracking (Reinforced Concrete) MO  

Longitudinal Cracking  LF 
Corner Breaks LO  
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Figure 3.6 is a corner break in the middle lane and Figure 3.7 are spalled joints in the middle 
and outer lanes. Corner breaks were not observed in the outer lane. As with FAY-62-13.65, 
the ODOT raters likely rated the middle lane in accordance with ODOT procedure of rating 
the lane with more distress, and the outer lane was rated by the Pathview equipment. 
 

 

 
Figure 3.6 Corner Break on HAM-275-36.58 
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Figure 3.7 Joint Spalling and Repairs on HAM-275-36.58 

 
As shown in Table 3.1, the recommended activity based on PCR was activity 40, concrete 
pavement restoration (CPR). The recommended activity based on PCS was activity 70, crack 
and seat; activity 77, rubblize and roll; activity 90, unbonded overlay; activity 100, new 
flexible pavement; or activity 111, new rigid pavement. The OU research team did not 
observe any distresses which would warrant a major rehabilitation on this section. 
 
GRE-444-7.91. This jointed reinforced concrete section is a 5 lane undivided road with two 
lanes in each direction and a turn lane in the middle at the interchange with I-675 just 
northeast of the city of Fairborn. The projected PCR was 88 with a structural deduct of 1. The 
projected PCS was 72 with a structural deduct of 23. Projected distresses are shown in Table 
3.7. 
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Table 3.7 GRE-444-7.91 Distresses 

Distress PCR PCS 

Longitudinal Joint Spalling MO LO 
Patching LF  

Faulting  LE 
Transverse Joint Spalling LO MO 
Transverse Cracking (Plain Concrete)  HE 
Pressure Damage O  

Transverse Cracking (Reinforced Concrete) LO  

Longitudinal Cracking  ME 
 

 
 
Figures 3-7 through 3-9 show distresses observed during the field visit. The pavement 
transitions from two lanes to five lanes at the beginning of this section. The longitudinal 
cracking rated by PCS is likely the longitudinal joints in the transition area, shown in the 
Google image in Figure 3.10. 
 
 
 

 
Figure 3.7 Patched Longitudinal Spalling, GRE-444-7.91 
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Figure 3.8 Joint Spalling, GRE-44-7.91 
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Figure 3.9 Patching, GRE-444-7.91 

 

 
Figure 3.10 Longitudinal Joints within the travelled lanes (Google Maps, 2021) 
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As shown in Table 3.1, the recommended activity based on PCR was activity 0, do nothing. 
The recommended activity based on PCS was activity 70, crack and seat; activity 77, rubblize 
and roll; activity 90, unbonded overlay; activity 100, new flexible pavement; or activity 111, 
new rigid pavement. The OU research team did not observe any distresses which would 
warrant a major rehabilitation on this section. However, most of the repair were asphalt, 
which are temporary. Should funds be available, replacing the asphalt repair with concrete 
would help preserve the pavement and provide a better ride to the public. 
 
In summary,  

• On flexible pavements, PCS procedure will rate edge cracking on pavement with a 
pavement shoulder or curb, which is not rated when using the PCR procedure 

• The decision trees for PCS recommend major rehabilitation for most jointed concrete 
pavements. The field survey showed many of these sections can be rehabilitated using 
a lesser treatment. 

• The Pathway van collects the images from the outer lane on the four lane and Interstate 
system. The PCR raters rate the lane with the higher distress, which could be a lane 
other the outer lane. When the inner lanes are more distressed due to construction 
sequence, widening, mill and fill rehabilitation, there can be a significant difference in 
the distresses rated. 
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Appendix 4: Models and Data 
Identifying Outliers 
 

Table 4.1: Outlier selection criteria and impacted data. 
Possible Cause of Outlier Criteria Percent of 

Sections 
Not Collected, Pathview error, 
maintenance, or reconstruction 

No distresses in automated data, 
but PCR < 100 

9.9% 

Maintenance or reconstruction 
between automated collection 
and PCR rating 

PCR > 95, PCS < 80, flexible or 
composite* 

3.6% 

Maintenance or reconstruction 
between PCR rating and 
automated collection 

PCR < 90, PCS >95, flexible or 
composite* 

14.8% 

 
Total 28.3% 
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Figure 4.1: Scatter plot comparing PCS and PCR with outliers matching criteria marked 
for composite pavement. 
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Figure 4.2: Scatter plot comparing PCS and PCR with outliers matching criteria marked 
for flexible pavement. 
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Figure 4.3: Scatter plot comparing PCS and PCR with outliers matching criteria marked 
for concrete pavement. 
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PCI Comparisons 

 
Figure 4.4: Scatter plot comparing automated PCS and automated PCI scores for flexible 
pavements. 
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Figure 4.5: Scatter plot comparing manual PCR and automated PCI scores for flexible 
pavements 
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Regression Models   
Table 4.2: Baseline PCS decision outcomes 

Flexible Sections Percent 
Total 5166 100% 

Same Bin 2803 54% 
Same Activity 3116 60% 

 

 
Figure 4.6: Scatter plot comparing manual PCR and automated PCS scores using the 

baseline PCS model. 
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Table 4.3: Regressed PCS decision outcomes 
Flexible Sections Percent 

Total 5166 100% 
Same Bin 3082 59% 

Same Activity 3383 65% 
 

 
Figure 4.7: Scatter plot comparing manual PCR and automated PCS scores using the 

regressed PCS model. 
 
 

 
Equation 4.1: Calculation of new PCS threshold from best fit line 

 
 

Table 4.4: Regressed PCS decision outcomes with modified thresholds 
Flexible Sections Percent 

Total 5166 100% 
Same Bin 3077 59% 

Same Activity 3381 65% 
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Bridge/Structure Exclusions 
 

Table 4.5: PCS comparison between bridges included and excluded 
 Baseline Bridges 

Removed 
Average 88.04 88.05 
Median 87.8 87.8 

Std. Dev. 8.73 8.73 
 

 
Figure 4.8: Scatter plot comparing PCS including bridges and other structures to PCS 

without them. 
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Faulting 2D vs 3D 

 
Figure 4.9: Combination plot comparing the correlation between PCS and PCR using 2D vs 
3D faulting calculations for a sample set of data. 
  

50

55

60

65

70

75

80

85

90

95

100

40 50 60 70 80 90 100

PC
S

PCR

2016 PCS 2D vs 3D faulting

PCS 3D

PCS 2D

Linear
(PCS 3D)

Linear
(PCS 2D)



 
DEVELOPMENT OF AUTOMATED PAVEMENT CONDITION SCORE AND DECISION LOGIC Page 101 

Appendix 5: Pavement Condition Score Manual 
 
Process Overview 
 
Pavement Condition Score (PCS) is a rating system that evaluates pavement using automated 
data while maintaining some level of parity to the Pavement Condition Rating (PCR) 
historically used by the Ohio Department of Transportation (ODOT). These evaluations are the 
middle ground between data collection and overall pavement management. This document 
covers the process of generating and extracting the necessary data from the data collection 
vendor’s software, Pathview, as well as the steps needed to generate a rating, potential 
treatments, and deterioration models. 
 
As part of the development of PCS, two macros were developed to aid calculations.  One 
macro calculated the PCS rating, including score and distress calls, while the other generates 
decisions from this information.  While PCS can be calculated manually, this manual also 
includes instructions to use these macros. 
 

 
Figure 5.1: Flowchart of PCS calculation process. 
 
Pathview Software Overview 
 
Pathview II Road Condition Information System (Pathview) is a software package created by 
Pathways Services, Inc. to incorporate all data collected by their Pathrunner vehicles with 
pavement management segmentation. Images, 3d laser data, and various other measured 
data are all available and tied to the corresponding sections.  Users can also process data 
with various tools and generate a variety of reports. 
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Figure 5.2: Main screen of Pathview software. 

 
AutoCrack  
Pathrunner vehicles equipped with 3d laser scan equipment produce raw data that must be 
further refined to detect cracking. The AutoCrack tool within Pathview analyzes this raw data 
to populate a distress features database with distresses.  These distresses are not classified 
and are only marked as the presence of a distress with some measured characteristics. 
 
This process must be done on all data that will be used for PCS ratings. Processing the whole 
data collection year can take months. 
 

 
Figure 5.3: Screenshot showing the location of AutoCrack processing 
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AutoClass 
Once the distress features database is populated by AutoCrack, the AutoClass tool is ran to 
classify the identified distresses into type and severity. The classifications are done in 
accordance with settings defined by a .c11 file developed for ODOT by Pathway Services, Inc. 
This process can take several weeks to classify all distresses identified in a data collection 
year and must be completed for all data used for PCS rating. 
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Updating Summary 
Additional steps must be taken after distresses have been classified by AutoClass. First, a 
process to calculate faulting on all identified joints must be completed. While this process 
will calculate faulting, it will not automatically update the totals for each segment. 
 
After all other tasks are complete in the software, a final step is required to update the totals 
for faulting, rutting, and IRI. This simple process just pulls all the data to the segments to 
prepare them for generating reports.  
 

 
 
Generating Reports 
The main source of data for PCS calculations is a distress report from Pathview. These reports 
are generated using an interval of 528 feet (0.1 miles/160.9344 meters) for the purposes of 
PCS calculation.  
 
Required Headers 
Before generating a report, several fields must be selected in Pathview by control-clicking the 
corresponding header. Selected headers are highlighted with blue text. Each of these is 
essential to the PCS calculation tool to properly identify intervals reported and match them 
to segmentation and exclusions. 
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Table 5.1: List of required headers that must be selected in Pathview for reports. 
Required Header 
SRI 
Site 
District 
Road 
Begin(mi) 
End(mi) 
Len(ft) 
Set 
Start-Image 

 
 
Distress Quantities 
When generating a report, Pathview will prompt the user to mark which properties of each 
distress type to report, such and length, width, an area. The PCS calculation macro will 
require specific properties of each distress type to be able to compute PCS. 
 
Calculating PCS 
 
Distress Definitions 
Keeping compatibility with historical data, PCS uses the same definitions for distress types, 
severities, and extents as Pavement Condition Rating with a few exceptions to account for 
how data is reported by Pathview software. 
 
Assumptions 
To convert Pathway’s distress data into a PCS rating, the following assumptions are 
considered: 
 

1. Severity evaluations done by the Pathview software are correct and in line with 
existing practices.  

2. Segmentation divides the pavement into sections with consistent pavement types and 
general condition.  

3. Transverse cracks are full lane width. 
4. The overall average spacing of transverse cracks is used to determine extent. 
5. Twelve feet was used as the default lane width. 
6. All transverse cracking is treated equally.  
7. Segments containing multiple severities of the same distress have extent assigned to 

each severity level.  Only the highest total deduct from the combination of extent and 
severity is reported. 

8. When two severity/extent combinations have the same deduct value, the higher 
severity combination is reported.  For example, if a segment has both ME and HO and 
both have a deduct value of 3, HO will be reported on the sheet.  
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9.  “UP” on the PCR segmentation sheet is considered as Ascending Milepost, and 
“DOWN” is considered as Descending Milepost when differentiating between segments 
collected in both directions.  

10. Patching and Pothole distresses are assigned deduct values based only on extent.  
Note: Pathview’s output contains columns for Patching and Potholes but does not 
detect them reliably.  

11. Intervals from the interval report are only considered part of a PCR segment if their 
starting milepost is within the segment. 

12. Intervals with more than 25% of the interval excluded due to structures and other 
exclusions are discarded entirely. 

Extent Assignment 
Because the severity was considered correct from the Pathview software, a simple conversion 
was used to map each distress output into a severity rating used by the PCR manual (L, M, or 
H). To reach a final rating for each distress, and subsequent deduct value, the extent had to 
be determined.  Given that Pathview outputs values for each severity level, each must be 
evaluated for extent and given a deduct value.  Only the highest deduct value is considered 
for each distress type for each segment.  
 
The extent rating (O, F, or E) is determined by comparing criteria to the bounds presented on 
the “Deducts” sheet.  The MedLowerBound and MedUpperBound are the inclusive limits of 
extent used for “Frequent” rating.  Each type of distress has slightly different units for these 
bounds, as noted below.  However, all extent ratings are calculated by converting the data 
into the same units as these bounds, and then comparing them.  For example, if the lower 
and upper bounds for raveling are 20 and 50 percent of pavement with distress, then the 
raveling area will be converted into a percent of the segment area and compared to the 
limits. 
 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 < 𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿 = Occasional 
𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿 ≤ 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ≤ 𝑈𝑈𝑈𝑈𝑈𝑈𝑉𝑉𝐿𝐿𝑈𝑈𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿 = 𝐹𝐹𝐿𝐿𝑉𝑉𝐹𝐹𝑉𝑉𝑉𝑉𝐿𝐿𝐹𝐹 

𝑈𝑈𝑈𝑈𝑈𝑈𝑉𝑉𝐿𝐿𝐿𝐿𝐿𝐿𝑉𝑉𝐿𝐿𝐿𝐿 < 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝐸𝐸𝐸𝐸𝐹𝐹𝑉𝑉𝐿𝐿𝐸𝐸𝐸𝐸𝐸𝐸𝑉𝑉  
 
For each type of distress presented by Pathway’s process, the extent was calculated using 
one of the following methods: 
 
Length-Based Distress (Longitudinal Cracking): 
According to the ODOT 2006 PCR manual, extent for longitudinal cracking was based on the 
feet of cracking present per 100’ of the sample unit.  This can be expressed as the length of 
longitudinal cracking as a percent of the segment length.  
 

𝑇𝑇𝐿𝐿𝐹𝐹𝑉𝑉𝑉𝑉𝑃𝑃𝐿𝐿𝑉𝑉𝑇𝑇𝑇𝑇𝐸𝐸𝐿𝐿𝑇𝑇
𝑃𝑃𝑉𝑉𝑇𝑇𝑆𝑆𝑉𝑉𝐿𝐿𝐹𝐹𝐿𝐿𝑉𝑉𝐿𝐿𝑇𝑇𝐹𝐹ℎ

𝐸𝐸 100 = 𝐸𝐸𝐸𝐸𝐹𝐹𝑉𝑉𝐿𝐿𝐹𝐹𝑃𝑃𝑉𝑉𝐿𝐿𝑇𝑇𝑉𝑉𝐿𝐿𝐹𝐹 

 
Average Spacing Distress (Transverse Cracking): 
Given the total width of transverse cracking, dividing by the lane width yields an estimated 
count of cracks (see Assumption 3). Dividing the total segment length by the estimated crack 
count results in an estimated average crack spacing (see Assumption 4). If the actual crack 
spacing is available, it should be used instead of the estimate. 
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𝑇𝑇𝐿𝐿𝐹𝐹𝑉𝑉𝑉𝑉𝑃𝑃𝐿𝐿𝑉𝑉𝑇𝑇𝑇𝑇𝐸𝐸𝐿𝐿𝑇𝑇
𝐿𝐿𝑉𝑉𝐿𝐿𝑉𝑉𝐿𝐿𝐸𝐸𝐿𝐿𝐹𝐹ℎ

= 𝐸𝐸𝐸𝐸𝐹𝐹𝐸𝐸𝑆𝑆𝑉𝑉𝐹𝐹𝑉𝑉𝐿𝐿𝑃𝑃𝐿𝐿𝑉𝑉𝐿𝐿𝐹𝐹 
 

𝑃𝑃𝑉𝑉𝑇𝑇𝑆𝑆𝑉𝑉𝐿𝐿𝐹𝐹𝐿𝐿𝑉𝑉𝐿𝐿𝑇𝑇𝐹𝐹ℎ
𝐸𝐸𝐸𝐸𝐹𝐹𝐸𝐸𝑆𝑆𝑉𝑉𝐹𝐹𝑉𝑉𝐿𝐿𝑃𝑃𝐿𝐿𝑉𝑉𝐿𝐿𝐹𝐹

= 𝐸𝐸𝐸𝐸𝐹𝐹𝐸𝐸𝑆𝑆𝑉𝑉𝐹𝐹𝑉𝑉𝐿𝐿𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝑉𝑉𝑇𝑇𝑉𝑉𝑃𝑃𝑈𝑈𝑉𝑉𝑇𝑇𝐸𝐸𝐿𝐿𝑇𝑇 

 
Area-Based Distress: 
The extent of an area-based distress, such as raveling, is determined by the percent of the 
segment’s total area that is impacted by the distress.  Given a total area of distress from 
Pathview’s output, dividing by the total area and multiplying by 100 gives the percent of total 
area.  The total area of the segment is based on the segment length from the PCR 
segmentation and the lane width (which is assumed to be 12’ if no other data is available). 
 

𝑇𝑇𝐿𝐿𝐹𝐹𝑉𝑉𝑉𝑉𝑇𝑇𝐸𝐸𝐸𝐸𝐹𝐹𝐿𝐿𝑉𝑉𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝐸𝐸𝐿𝐿𝑉𝑉𝑉𝑉
𝑃𝑃𝑉𝑉𝑇𝑇𝑆𝑆𝑉𝑉𝐿𝐿𝐹𝐹𝐿𝐿𝑉𝑉𝐿𝐿𝑇𝑇𝐹𝐹ℎ 𝐸𝐸 𝐿𝐿𝑉𝑉𝐿𝐿𝑉𝑉𝐿𝐿𝐸𝐸𝐿𝐿𝐹𝐹ℎ

 𝐸𝐸  100 =  𝑃𝑃𝑉𝑉𝐿𝐿𝑇𝑇𝑉𝑉𝐿𝐿𝐹𝐹𝑇𝑇𝐸𝐸𝐸𝐸𝐹𝐹𝐿𝐿𝑉𝑉𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿 

 
Wheel Path Length Distress: 
Wheel track cracking and other distresses related to the length of the wheel path have their 
extent calculated based on the percent of total wheel path length in the segment (twice the 
total segment length).  It is a simple calculation of the total distress length divided by twice 
the segment length times 100. 

 
𝑇𝑇𝐿𝐿𝐹𝐹𝑉𝑉𝑉𝑉𝑃𝑃𝐿𝐿𝑉𝑉𝑇𝑇𝑇𝑇𝐸𝐸𝐿𝐿𝑇𝑇

2 𝐸𝐸 𝑃𝑃𝑉𝑉𝑇𝑇𝑆𝑆𝑉𝑉𝐿𝐿𝐹𝐹𝐿𝐿𝑉𝑉𝐿𝐿𝑇𝑇𝐹𝐹ℎ
 𝐸𝐸 100 = 𝑃𝑃𝑉𝑉𝐿𝐿𝑇𝑇𝑉𝑉𝐿𝐿𝐹𝐹𝑃𝑃𝑃𝑃𝐿𝐿ℎ𝑉𝑉𝑉𝑉𝑉𝑉𝑈𝑈𝑉𝑉𝐹𝐹ℎ 

 
Count per Mile Distress: 
Distresses such as potholes are given extent based upon the total count per mile of the 
segment.  Because SegmentLength is already converted into feet within the code, the value in 
count per feet must be converted by multiplying by 5280 feet per mile. 
 

𝑇𝑇𝐿𝐿𝐹𝐹𝑉𝑉𝑉𝑉𝑃𝑃𝐿𝐿𝑉𝑉𝐿𝐿𝐹𝐹
𝑃𝑃𝑉𝑉𝑇𝑇𝑆𝑆𝑉𝑉𝐿𝐿𝐹𝐹𝐿𝐿𝑉𝑉𝐿𝐿𝑇𝑇𝐹𝐹ℎ

𝐸𝐸 5280 = 𝑃𝑃𝐿𝐿𝑉𝑉𝐿𝐿𝐹𝐹𝑃𝑃𝑉𝑉𝐿𝐿𝐶𝐶𝐸𝐸𝑉𝑉𝑉𝑉 

 
Count per mile type distresses don’t have a severity assigned by Pathview software.  Only the 
Extent is used to assign a deduct value.  To arrive at the deduct value, the extent’s deduct 
multiplier is multiplied by the full deduct weight. 
 
Note that when using the PCS calculation tool, MedLowerBound is the minimum spacing, even 
though lower spacing is a higher deduct.  This is intentional to allow for logic to be reused 
and is accounted for in the tool.  The lower and upper bounds should be set to the minimum 
and maximum limits of the “Frequent” extent values, respectively. 
 
Rutting: 
Rutting is not divided into severities by Pathview software, only the average rutting 
measurement is reported in the sensor report output for the interval specified.  Using the 
tenth-mile interval report, a severity is determined for each interval and added to a total, in 
miles affected, for each severity.  After totaling all of the intervals within the segment, the 
extent for each severity is assigned based on the percent of the total segment length affected 
by that severity of rutting. 
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For example, if a 2.31 mile PCS segment had 1.2, 1.01, and 0.1 miles of low, medium, and 
high severity rutting, respectively, the software would determine the three combinations of 
severity and extent as LE, MF, and HO.  If this segment was a flexible pavement, HO would be 
assigned as it has the highest deduct value for rutting. 
 

𝑇𝑇𝐸𝐸𝐸𝐸𝐹𝐹𝑉𝑉𝐿𝐿𝑇𝑇𝑉𝑉𝑒𝑒𝑉𝑉𝐹𝐹𝐹𝐹𝑉𝑉𝐿𝐿
𝑃𝑃𝑉𝑉𝑇𝑇𝑆𝑆𝑉𝑉𝐿𝐿𝐹𝐹𝐿𝐿𝑉𝑉𝐿𝐿𝑇𝑇𝐹𝐹ℎ

 𝐸𝐸 100 = 𝑃𝑃𝑉𝑉𝐿𝐿𝑇𝑇𝑉𝑉𝐿𝐿𝐹𝐹𝑒𝑒𝑉𝑉𝐹𝐹𝐹𝐹𝑉𝑉𝐿𝐿 

 
Note, that per the 2006 ODOT PCR Manual, rutting with a depth of less than 1/8” is not 
considered as a distress.  Any interval with less than 1/8” rutting will not be counted/rated 
by the PCS conversion. 
 
The manual also doesn’t specify whether the 3/8” bound between low and medium severity is 
inclusive/exclusive.  Keeping consistent with the bounds used for extent calculations, the 
bounds for medium severity are considered as inclusive for the software, meaning 3/8” 
rutting is specifically a medium severity. 
 
IRI & Rutting Summary: 
Interval reports from Pathview’s software contain average IRI and Rutting for each interval.  
While the intervals are generally 0.1 miles, sections often have a remainder that is shorter 
than that interval.  To properly account for this when averaging IRI and Rutting, segment 
length is used to create a weighted average. 
 

∑ 𝐼𝐼𝑒𝑒𝐼𝐼𝑛𝑛 ∗ 𝐼𝐼𝐿𝐿𝐹𝐹𝑉𝑉𝐿𝐿𝐸𝐸𝑉𝑉𝑉𝑉𝑛𝑛𝑛𝑛
1
𝑇𝑇𝐿𝐿𝐹𝐹𝑉𝑉𝑉𝑉𝐿𝐿𝑉𝑉𝐿𝐿𝑇𝑇𝐹𝐹ℎ

= 𝐸𝐸𝐸𝐸𝑉𝑉𝐿𝐿𝑉𝑉𝑇𝑇𝑉𝑉𝐼𝐼𝑒𝑒𝐼𝐼 

 
 
Using the PCS Calculation Tool 
 
Upon opening the PCS calculation workbook, a user interface will open that can be used to 
process reports from Pathview into PCS results. Should any calibrations to the deducts or 
exemptions be required, the user form must be closed first.  To reopen the user form, save 
any changes and close then reopen the tool or use the “show user form” macro from the 
ribbon. 
 
Inputs 
The user form takes two main types of input and several that are optional. If any required 
inputs are not available, the tool will crash and require a restart. 
 
A segmentation source workbook is required that defines the pavement sections to be rated. 
This workbook should be in the same format as the PCR history workbook, with each year of 
data on its own worksheet. Clicking the ellipsis next to this field will open a prompt that 
allows the user to select a source.  Once a source is selected, an additional field will appear 
to prompt the user to select which sheet on the segmentation workbook to use. Data from 
this sheet, such as manual PCR ratings, will be copied to the resulting output workbook for 
reference. 
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Output path is optional and will automatically save the output workbook to the selected 
location and filename. The ellipsis button next to the field will open a Window’s prompt for 
the user to select a save location and filename.  Should the field be omitted, the output 
workbook will simply open and be unsaved once processing is complete. 
 
One or more interval reports from Pathview software are required.  Clicking the “Add Interval 
Reports” button will open a Windows form that allows the user to select one or more text 
files to process. Interval reports should only be processed if they match the segmentation 
source collection year.  Only intervals within these reports that fit within the segmentation 
will be processed. 
 
Given the nature of how Excel handles macro processing, once processing begins Excel will be 
locked into processing and may not respond properly to user input. A prompt will appear 
when processing is complete. 
 
Deducts Sheet 
The deducts sheet is the main calibration table for the tool.  For convenience, all PCR 
distresses are listed so any not currently reported by Pathview be added quickly if the 
software beings reporting them in the future.  Rows for distresses not used for PCS may be 
omitted if the user wishes to remove them. 
 
Distresses are grouped by pavement types by defined ranges.  Any future additions to the PCS 
distress list must be included in these defined ranges to be processed by the tool. Each row 
contains information described in the following table. 
 

Table 5.2: List of fields in the deducts sheet and their descriptions. 
Header Definition 
Pavetype Pavement type must be one of the following: FLEXIBLE, COMPOSITE, or 

JCP. 
PathwayCode This is the main portion of the header Pathview reports in an interval 

report. Also referenced on HeaderNames worksheet. 
Code The PCR code related to the distress 
Description  Distress name as given in PCR, for user reference 
Weight Maximum PCS deduct value assigned to the distress 
Sev L Deduct multiplier for low severity distress 
Sev M Deduct multiplier for medium severity distress 
Sev H Deduct multiplier for high severity distress 
Ext O Deduct multiplier for occasional extent of distress 
Ext F Deduct multiplier for frequent extent of distress 
Ext E Deduct multiplier for extensive extent of distress 
LO Calculated field for DSE deduct 
LF Calculated field for DSE deduct 
LE Calculated field for DSE deduct 
MO Calculated field for DSE deduct 
MF Calculated field for DSE deduct 
ME Calculated field for DSE deduct 
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Header Definition 
HO Calculated field for DSE deduct 
HF Calculated field for DSE deduct 
HE Calculated field for DSE deduct 
Type Calculation method, as described above. 
MedLowerBound Minimum percent extent required for the distress to be rated as 

frequent 
MedUpperBound Maximum percent extent the distress can be before being called 

extensive 
Structural Marks a distress to be included in structural deduct. A “1” is included, 

blanks are not. 
 
This sheet will also be copied to the resulting output workbook for reference. 
 
HeaderNames 
This sheet defines the exact header names to use from the Pathview interval reports for each 
distress and severity. The first column must match the PathviewCode column on the deducts 
sheet. Column B must be either “Low”, “Med”, “High”, “Count”, “Area”, or “Average”.  
These describe what type of data the PCS tool should be looking for in the defined column.  
The final column is the exact name used in the Pathview report for the distress. 
 
This table serves as a lookup table for the tool and should only need edited if changes are 
made to Pathview software report. Any distresses added to the deducts sheet must be added 
to this sheet for the software to include them in the PCS calculation. 
 
Exclusions 
The “BridgeLookupTable” sheet is used to mark any exclusions required, mostly for bridges 
and other structures. An exclusion is defined by the route’s unique identifier (NLFID), the 
beginning centerline milepost, direction, and length. When processing intervals, the 
exclusions will be considered and any interval with 25% or more of the interval excluded will 
not be included in the final PCS calculation. 
 
Outputs 
The output of the PCS calculation tool is an Excel workbook with several worksheets. The 
primary worksheet is the PCS Evaluation, with the segmentation data as well the score 
computation, deduct values for each matching PCR distress code, average IRI, average 
rutting, and text versions of the distress calls. The Deducts sheet is copied from the PCS 
calculation tool with the settings used to process the data and may be modified in the output 
workbook to adjust distress deducts used in calculations on the PCS Evaluation sheet. The PCR 
data for the sections processed is included in an additional sheet.  If the user selected raw 
outputs on the user form, it will also be included as a worksheet.  
 
Adjusting the Regression Model 
Because the PCS score result on the output sheet is a formula referencing the deducts sheet, 
a regression adjustment can be conducted using this sheet. An additional field must be added 
on the PCS result sheet to compute the squared error of each section compared to the 
corresponding PCR score. On the deducts sheet, a cell must contain the sum of the created 
column. 
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An Excel add-in, such as Solver, can be targeted to perform regression analysis with the goal 
of minimizing the sum of squared error via adjusting the maximum deduct value of the 
distresses. Care should be given to the minimum and maximum values set in the add-in. With 
unconstrained variables, some values may trend to zero or exceptionally high numbers.  In 
these cases, it is up to engineering judgement to apply some restriction on the variables to 
keep in line with current practices. 
 
Once a satisfactory solution is generated by regression, the deducts sheet may be copied to 
the PCS calculation workbook to generate further PCS results with the regressed coefficients. 
 
Using the Decision Tree Macro 
 
The decision tree macro workbook includes several worksheets as information sources as well 
as the main input sheet which will require data copied from the PCS calculation output.  

Table 5.3: List of worksheets in the decision tree macro and their descriptions. 
Worksheet Description 
Input Contains the input PCR data, AADT, and segment data for ODOT roads. 

Column J through M are formulas.   
AADT_Lookup A lookup table that contains data from ODOT GIS, must be updated if 

changes in general traffic volume have occurred since 2016. 
Distress 
Checks 

Defines the distress checks for the macro to use. Copied from the ODOT 
decision trees. Changes here will be reflected the next time data is 
processed. 

Activity 
Codes 

For reference, the ODOT activity codes for individual repairs/maintenance 
activities. 

Distress 
Codes 

For reference, the ODOT PCR distress codes by pavement type.  Copied from 
ODOT PCR manual. 

 
Inputs 
Data copied from the PCS calculation spreadsheet is the primary input required for the 
decision tree macro. The column names are identical to the PCS calculation sheet and follow 
a similar layout. The columns are detailed in the table below. 
 
Table 5.4: List of fields in the input worksheet of the decision tree macro workbook and 

their descriptions. 
Column Name Column Description 
Dist A District number 
Cou B County Abbreviation 
Rt C Route number 
Direction D Direction (UP or DOWN) 
Begin E Starting Milepost 
End F Ending Milepost 
Length G Length in Miles 
PCR H PCS or PCR Score 
StrD I PCS or PCS Structural Deduct Total 
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Column Name Column Description 
Date N (Optional) Data Collection Date/Year 
Divided O D for divided road, U for undivided road 
Pavement Type P Pavement type must be: COMPOSITE, JOINTED CONCRETE, 

or FLEXIBLE 
Code_# Q-AG Distress rating for corresponding PCR code number. (LF, 

HO, etc.) 
Nlf_Id AH Unique identifier for the route 

 
Outputs 
Once the required inputs are in the input sheet, running the ComputeAll macro (from View-
>Macros on the ribbon) will process all rows of data through the decision tree. Output will be 
populated in columns AI through AN and overwrite any existing data there. As with most Excel 
macros, Excel may be non-responsive until the macro has completed processing the full data 
set. 
 
Output columns contain both the resulting decision bin and activity as well as additional 
information that was used analysis during development of the PCS methodology. The 
following table describes the output columns. 

Table 5.5: List of output fields from the decision tree macro and their descriptions. 
Column Name Column Description 
DecisionTree AI Name of the decision tree used for this section (General, 

Priority, or Urban) 
DecisionPath AJ A string of characters describing the path taken through the 

tree (0 for no, 1 for yes, etc)—used for development. 
DecisionInputs AK A comma-separated list of inputs given to each node in the 

tree—used for development. 
BinID AL The ID of the decision bin result. 
Activity AM A list of activity codes within the bin (0 for Do Nothing) 
Distress Check 
Triggers 

AN A list of distress checks performed and list of checked 
distresses that were present in the section. 

 
Primary results are described by the BinID and Activity columns. However, the distress check 
column provides useful information that may be relevant to those making pavement 
management decisions.  When data is present in this column, the macro evaluated a distress 
check as defined on the decision tree and Distress Checks sheet. In the case that no distress 
matched the check’s criterion, only the name of the check will be present.  When a distress 
check encounters one or more distresses the check is looking for, they will be listed after the 
check name in the format Code:Rating, such as 14:HE. 
 
Because distress checks often trigger more extensive repairs, distresses called out in the 
distress check column are prime candidates for quality control review—especially if the 
section’s result doesn’t meet expectations. 
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Procedure Checklist 
Step Description Completed 
1. Quality Control: 
collected data 

• Verify segmentation 
• Review pavement type 
• Check collection direction vs segmentation 
• Field verification section review 

 

2. AutoCrack • Process all sections through Pathview’s AutoCrack 
tool (long process) 

• <additional details needed from ODOT staff> 

 

3. AutoClass • Ensure .C11 file is loaded in Pathview 
• Mark all records 
• Distress->Perform AutoClass 
• Ensure all required checkboxes are checked in 

accordance with the PCS manual 
• Finish prompt and begin processing (long process) 

 

4. Quality Control: 
distress features 
database 

• Verify distresses were classified by AutoClass 
• Review field verification section(s) for correct 

classifications 
• Ensure joints were identified for jointed pavement 

 

5. Process Joints 
for Faulting 

• Use Pathview’s tool for evaluating joints for 
faulting. 

• This process will only work correctly if AutoClass 
identified joints. 

 

6. Update Section 
Summary 

• Mark all records 
• Distress->Update Summary 
• If this process isn’t completed, IRI, Rutting, and 

Faulting data will not be reported correctly. 

 

7. Generate 
Sensor Report 

• Ensure required fields are selected (ctrl+click to 
select, highlighted with blue text) 

• Mark all records 
• Distress->Save Report 
• Ensure all checkboxes are checked according to 

the PCS Manual 

 

8. PCS Calculation 
Tool 

• Select segmentation workbook 
• Select sheet within workbook with correct 

segmentation 
• Add interval report(s) 

 

9. Quality Control: 
compare with 
historical and 
maintenance 
records 

• Identify sections that saw improvement in PCS year 
over year and compare with maintenance records 

• Compare all sections with historical PCS data and 
identify sections with drastic shifts in score for 
manual review 

 

10. Decision 
Calculation Tool 

• Copy data from the PCS result sheet into the 
required columns 

• Run ComputeAll Macro from the ribbon 
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Appendix 6: Questionnaire 
 
To evaluate common industry practices, researchers sent a questionnaire out to several 
transportation agencies. Notes from various responses highlight mixed success in 
implementing automated systems, with several agencies either correcting or manually rating 
some distress. Several agencies noted that automated collection had some shortcomings, but 
felt they were achieving higher consistency between collection years than manual ratings. 
 
Much like results discussed in this report, other agencies reported issues with composite and 
concrete pavement requiring additional manual effort than flexible pavements. Additionally, 
some agencies reported the need to manually rate some specific distresses that were not 
adequately reported by automation. 
 
All agencies responding use semi- or fully-automated methodologies for HPMS reporting, 
which covers distresses automated detection methods seem to reliably detect.  However, for 
pavement management purposes agencies were more inclined to add manual adjustment or 
ratings. 
 
The impact of transitioning to more automation in pavement management has had mixed 
results among the agencies responding.  Because of the variance in rating systems employed 
by the various agencies, it is difficult to discern how much an impact this change had on 
overall network average rating and whether such impacts are caused by the automation or by 
the differences with the original methodology. In most cases, verification is done during/after 
the transition by manual review of collected imagery and sensor data. 
 
For the impact on pavement management decisions, agencies often reported the need to 
revisit or monitor the decision methodology as new automated data is collected. Some 
agencies noted that extra care was taken in selection of rehabilitation projects as the 
automated system may be causing a bias towards selecting more extensive maintenance 
activities. This same phenomenon was noted in this research. 
 
An overall theme of responses often included ongoing efforts and continued research to 
bridge between the previous, manual methodologies and more automated methodologies. 
Several agencies are still in a transition phase where historical data from automated methods 
is being accumulated and analyzed to build better deterioration and decision models. 
 
The questionnaire is included at the end of this section. Below are tables summarizing the 
responses. 
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Table 6.1: List of agencies responding to the questionnaire. 

Agency Responding Agency Responding 
Alabama Yes Montana Yes 
Alaska Yes Nebraska Yes 
Arizona No Nevada Yes 
Arkansas No New Hampshire Yes 
California Yes New Jersey No 
Colorado Yes New Mexico Yes 
Connecticut No New York Yes 
Delaware No North Carolina No 
District of Columbia Yes North Dakota Yes 
Florida No Ohio N/A 
Georgia No Oklahoma No 
Hawaii No Oregon No 
Idaho No Pennsylvania No 
Illinois Yes Puerto Rico Yes 
Indiana No Rhode Island Yes 
Iowa No South Carolina Yes 
Kansas Yes South Dakota Yes 
Kentucky Yes Tennessee No 
Louisiana No Texas Yes 
Maine Yes Utah Yes 
Maryland Yes Vermont No 
Massachusetts No Virginia No 
Michigan No Washington No 
Minnesota Yes West Virginia No 
Mississippi No Wisconsin No 
Missouri No Wyoming Yes 
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Figure 6.1: Responses to question 1 related to HPMS 

 
Figure 6.2: Responses to question 1 related to PMS 

 
  

Fully Auto
64%

Semi-Auto
36%

Manual
0%

Other
0%

Which method of distress identification is your 
agency using for HPMS reporting? 

Fully Auto
52%Semi-Auto

36%

Manual
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Which method of distress identification is your 
agency using for PMS? 
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Table 6.2: Responses to question 2 of the questionnaire 

If pavement distresses are combined to form an overall pavement condition 
rating/index/score, did fully- or semi-automated distress identification result 
in a higher or lower overall rating/index/score when compared with the 
manual ratings? 
Answer Options Response Percent Response Count 

Higher 16 4 

Lower 20 5 

NA 56 14 

Depends 8 2 

Agency Response 100 25 

 
 
 

Table 6.3: responses to question 3 of the questionnaire 
What specific changes (removal, modification, addition) have you made to 
the distresses you rate because of the transition to automated pavement 
condition rating?  
Answer Options Response 

Percent 
Response 
Count 

Added Distress 43 10 

Removed Distress 35 8 

Modified 43 10 

Other 26 6 

Agency Response 100 25 

 
 
 

Table 6.4: Responses to question 4 of the questionnaire 
What effect did the transition to fully- or semi-automated distress 
identification have on your Maintenance and Rehabilitation decision 
methods? How did you adjust for the differences? 
Answer Options Response Percent Response Count 

Modifications to Decision Methods 43 10 

New Decision Methods 4 1 

No Changes 39 9 

Other 13 3 

Agency Response 100 23 



  

 
 
 

Pavement Data Collection and Condition Rating Methods Questionnaire 
Ohio Department of Transportation (ODOT) contracted ARA Inc. to develop a methodology to 
transition from a manual data collection based pavement management system (PMS), to an 
automated data collection based pavement management system.  The project objectives 
include analyzing the automated roadway image data (Laser Crack Measurement System), 
developing a pavement condition score based on the automated distress data, and updating 
the pavement performance models and decision tree logic. 
ARA has developed this questionnaire to gather relevant/available information to identify the 
current pavement data collection methodologies used by various states in the U.S., and the 
use of automated pavement data in the pavement management system. 
For this survey the following definitions are used: 

• Fully-automated pavement distress identification: All pavement distresses are 
identified and recorded through computer algorithms using images, lasers, sensors, 
etc., with little to no human intervention after configuration. 

• Semi-automated distress identification:  Some or all pavement distresses are 
identified and recorded by personnel viewing images in the office.  Some distresses 
may be fully automated. 

• Manual pavement distress identification:  All pavement distresses are identified and 
recorded by foot-on-ground, windshield surveys, or similar methods. 

 
Agency:  
Contact:  
Address: 
Email: 
Telephone: 
Date: 
 

1. Which method of distress identification is your agency using for the following?  Please 
check all that apply.  If “Other”, please describe below. 
     Fully Semi Manual  Other  
HPMS     ☐ ☐ ☐  ☐  

Supplement to Manual Survey ☐ ☐ ☐  ☐  
Used in PMS    ☐ ☐ ☐  ☐  
Other     ☐ ☐ ☐  ☐  
 
  
 
 

2. If pavement distresses are combined to form an overall pavement condition 
rating/index/score, did fully- or semi-automated distress identification result in a 
higher or lower overall rating/index/score when compared with the manual ratings? 

Higher ☐       Lower ☐           NA ☐  
 
  
 
  



  

 
 
 

 
3. What specific changes (removal, modification, addition) have you made to the 

distresses you rate because of the transition to automated pavement condition rating? 
Please describe. 
 

Added Distresses:   

  

Removed 
Distresses:  

 

  

Modified Distress 
Definition: 

 

  

Other:  

 
 

4. What effect did the transition to fully- or semi-automated distress identification have 
on your Maintenance and Rehabilitation decision methods? How did you adjust for the 
differences?  
 

Modifications to decision methods ☐            Completely new decision methods 
☐  No changes ☐           Other ☐ 
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